36 research outputs found
Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber fusarium wilt
In recent years, bacterial-based biocontrol agents (BCA) have become a new trend for the control of fungal diseases such as fusarium wilt that seriously threaten the yield and quality of cucumber, which are transmitted through infested soil and water. This study was set out with the aim of figuring the mechanism of the isolated rhizobacterial strain Paenibacillus polymyxa PJH16 in preventing Fusarium oxysporum f. sp. cucumerinum (Foc). Biocontrol and growth-promoting experiments revealed that bacterial strain causes effective inhibition of the fungal disease through a significant growth-promoting ability of plants, and had activities of β-1,3-glucanase, cellulase, amylase and protease. It could produce siderophore and indole-3-acetic acid, too. Using the high-throughput sequencing tool PacBio Sequel II system and the database annotation, the bacterial strain was identified as P. polymyxa PJH16 and contained genes encoding for presence of biofilm formation, antimicrobial peptides, siderophores and hydrolyases. From comparing data between the whole genome of P. polymyxa PJH16 with four closely related P. polymyxa strains, findings revealed markedly the subtle differences in their genome sequences and proposed new antifungal substances present in P. polymyxa PJH16. Therefore, P. polymyxa PJH16 could be utilized in bioengineering a microbial formulation for application as biocontrol agent and bio-stimulant, in the future
Use of Flurbiprofen Ester in 4-Dimensional Hysterosalpingography: Does Flurbiprofen Ester Relieve Pain During an Infertility Evaluation?
Objective: The purpose of this study was to determine the analgesic effect of a flurbiprofen ester injection via continuous intravenous drip during transvaginal 4-dimensional hysterosalpingography (TVS 4D-HyCoSy). Methods: Two hundred thirty patients who underwent TVS 4D-HyCoSy for infertility from May 2018 to August 2021 at our hospital were selected. The participants were grouped based on tubal patency, flurbiprofen ester use, and uterine cannula diameter, as follows: bilateral tubal patency group; non-bilateral tubal patency group; atropine group; atropine + flurbiprofen ester group; coarse tube group; and fine tube group. The analgesic effect during TVS 4D-HyCoSy and pain relief were compared between groups using visual analog scoring (NRS). Additionally, the incidence of adverse effects was recorded and factors related to the influence of pain were analyzed. Results: 1. Tubal patency reduced pain during ultrasound tubal examination, flurbiprofenate provided significant analgesia after ultrasound tubalography and reduced adverse effects (P < 0.001). 2. The tube diameter thickness had no effect on tubal ultrasonography procedure-related pain. 3. Multivariable analysis of pain relief during imaging suggested that the use of flurbiprofen for bilateral tubal patency had a significant positive effect on pain relief within 30 min after the examination with an AUC of 0.732 (95% CI: 0.665–0.798). Conclusion: A flurbiprofen ester continuous intravenous drip had a good analgesic effect in patients with TVS 4D-HyCoSy. Specifically, the pain relief effect after examination was significant and reduced the incidence of adverse reactions during the contrast examination. Flurbiprofen ester can be administered independently and is worthy of clinical promotion and application
Genome and secretome analysis of Pochonia chlamydosporia provide new insight into egg-parasitic mechanisms
Pochonia chlamydosporia infects eggs and females of economically important plant-parasitic nematodes. The fungal isolates parasitizing different nematodes are genetically distinct. To understand their intraspecific genetic differentiation, parasitic mechanisms, and adaptive evolution, we assembled seven putative chromosomes of P. chlamydosporia strain 170 isolated from root-knot nematode eggs (~44 Mb, including 7.19% of transposable elements) and compared them with the genome of the strain 123 (~41 Mb) isolated from cereal cyst nematode. We focus on secretomes of the fungus, which play important roles in pathogenicity and fungus-host/environment interactions, and identified 1,750 secreted proteins, with a high proportion of carboxypeptidases, subtilisins, and chitinases. We analyzed the phylogenies of these genes and predicted new pathogenic molecules. By comparative transcriptome analysis, we found that secreted proteins involved in responses to nutrient stress are mainly comprised of proteases and glycoside hydrolases. Moreover, 32 secreted proteins undergoing positive selection and 71 duplicated gene pairs encoding secreted proteins are identified. Two duplicated pairs encoding secreted glycosyl hydrolases (GH30), which may be related to fungal endophytic process and lost in many insect-pathogenic fungi but exist in nematophagous fungi, are putatively acquired from bacteria by horizontal gene transfer. The results help understanding genetic origins and evolution of parasitism-related genes.This work was supported by the National Key Research and Development (R&D) Plan of China (2016YFC1201100), and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS)
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.
Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would
like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen,
China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center
for Excellence in Brain Science and Intelligence Technology, Chinese Academy
of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute,
Boston, USA) for their help. This work was supported by the grant of Top Ten
Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory
of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu
was supported by the National Natural Science Foundation of China
(31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of
Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research
Foundation (2021B1515120075).S
Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value
Abstract Background Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. Results Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647Â bp in length and consisted of 19 circular subgenomes ranging in size from 21,995Â bp to 48,212Â bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. Conclusion In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history
Diversity and Network Relationship Construction of Soil Fungal Communities in <i>Lactarius hatsudake</i> Tanaka Orchard during Harvest
Lactarius hatsudake Tanaka is a mycorrhizal edible mushroom with rich economic and nutritional value. Although it is artificially planted, its yield is unstable. Soil fungi, including L. hatsudake, coexist with many other microorganisms and plants. Therefore, complex microbial communities have an influence on the fruiting body formation of L. hatsudake. L. hatsudake and its interactions with the rest of the fungal community over time are not completely understood. In this study, we performed high-throughput sequencing of microorganisms in the basal soil of the fruiting body (JT), mycorrhizosphere soil (JG), and non-mushroom-producing soil (CK) in a 6-year-old L. hatsudake plantation at harvest. The results showed that the soil of the L. hatsudake plantation was rich in fungal communities and a total of 10 phyla, 19 classes, 53 orders, 90 families, 139 genera, and 149 species of fungi were detected. At the phylum level, the major groups were Basidiomycota and Ascomycota. At the genus level, the dominant groups were Lactarius, Trichoderma, Suillus, and Penicillium. Among them, L. hatsudake had an absolute dominant position in the soil fungal community of the plantation, and was the only group of Lactarius in the plantation soil. Penicillium cryptum and Penicillium adametzii were unique to the JT soil sample. Chaetopsphaeria, Myxocephala, Devriesia, and Psathyrella were positively correlated with L. hatsudake. In the constructed fungal network, the total number of nodes were ranked in descending order as JG (441) > CK (405) > JT (399), while the total number of edges were ranked in descending order as CK (1360) > JG (647) > JT (586). Analysis of the fungal assembly process revealed that groups CK and JG have determinative processes that dominated community building, while the JT group exhibited a dominant random process with a 0.60 probability. The results indicated that L. hatsudake was successfully colonized in the plantation soil. During harvest, the CK group exhibited the largest network size and the most complex fungal interactions, while the fungal community structure in the mushroom cultivation zone (JT and JG) was stable and less susceptible to external environmental interference. L. hatsudake affects the fungal community in the soil surrounding its fruiting body
The Soil Bacterial Community Structure in a <i>Lactarius hatsudake</i> Tanaka Plantation during Harvest
Lactarius hatsudake Tanaka is a mycorrhizal edible mushroom with an appealing taste and rich nutrition. It is also a significant food and has medicinal value. In this study, the plantation of L. hatsudake during the harvest period was taken as the research object, and this article explores which bacteria in the soil contribute to the production and growth of L. hatsudake. The soil of the control (CK) and the soil of the mushroom-producing area [including the soil of the base of the mushroom (JT) and the mycorrhizal root soil (JG)] was collected in the plantation. The three sites’ bacterial community structure and soil diversity were analyzed using high-throughput sequencing technology, and a molecular ecological network was built. Soil bacteria in the L. hatsudake plantation had 28 tribes, 74 classes, 161 orders, 264 families, 498 genera, and 546 species. The dominant phyla were Proteobacteria and Acidobacteria, and the dominant genera were Burkholderia_Caballeronia_Paraburkholderia, Acidothermus, Bradyrhizobium, Candidatus_Xiphinematobacter, and Granulicella. The α-diversity of soil bacteria in JT was significantly lower than that in JG and CK, and the β-diversity in JT samples was significantly different from that in JG and CK samples. The size and complexity of the constructed network were smaller in JT samples than in JG and CK samples, and the stability was higher in JT samples than in JG and CK samples. The positive correlation between species in JT samples was dominant. The potential mycorrhizal helper bacteria (MHB) species of L. hatsudake was determined using correlation and differential group analysis. The results support future research on mycorrhizal synthesis, plantation management, and the function of microorganisms in the soil rhizosphere of L. hatsudake
Additional file 1 of Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value
Supplementary Material 1