15 research outputs found

    Application of radiomics in diagnosis and treatment of lung cancer

    Get PDF
    Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks

    A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects

    Full text link
    Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC

    The Multimodal Information based Speech Processing (MISP) 2022 Challenge: Audio-Visual Diarization and Recognition

    Full text link
    The Multi-modal Information based Speech Processing (MISP) challenge aims to extend the application of signal processing technology in specific scenarios by promoting the research into wake-up words, speaker diarization, speech recognition, and other technologies. The MISP2022 challenge has two tracks: 1) audio-visual speaker diarization (AVSD), aiming to solve ``who spoken when'' using both audio and visual data; 2) a novel audio-visual diarization and recognition (AVDR) task that focuses on addressing ``who spoken what when'' with audio-visual speaker diarization results. Both tracks focus on the Chinese language, and use far-field audio and video in real home-tv scenarios: 2-6 people communicating each other with TV noise in the background. This paper introduces the dataset, track settings, and baselines of the MISP2022 challenge. Our analyses of experiments and examples indicate the good performance of AVDR baseline system, and the potential difficulties in this challenge due to, e.g., the far-field video quality, the presence of TV noise in the background, and the indistinguishable speakers.Comment: 5 pages, 4 figures, to be published in ICASSP202

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial

    Get PDF
    Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups. Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Relative attitude stability analysis of double satellite formation for gravity field exploration in space debris environment

    No full text
    Abstract Spacecraft operating in low orbit are at risk of being hit by space debris. In the debris environment, the impact of debris is likely to cause the double satellite formation to exit science mode or even lead to the divergence of the control system, thus affecting the scientific exploration mission. In this paper, the attitude stability of the double satellite formation for gravity field in the near circular and polar orbit in the space debris environment is studied. Firstly, based on Lyapunov control and LQR, two sets of control models of stochastic collision for two satellites aligned with each other were proposed, and the actuators were modelled and assigned. Secondly, models of collision probability and momentum are developed. The distribution law of space debris is obtained according to the international common debris software. Meanwhile, probability density function of two independent collisions is gained. Finally, through Monte Carlo simulation and statistics, the changes of relative attitude and thrust torque are simulated when the satellite obtains the angular momentum for a short period of time due to being impacted by space debris. During the 10-year mission period, the number of times that the space debris impact makes the satellite attitude out of the science mode and the number of times that the control system diverges are obtained, which provides a reference for the normal manner of the double satellite formation for gravity field exploration

    Effects of extreme hydrostatic pressure on the molecular structure and properties of the elastomeric material for soft robots

    No full text
    The successful exploration of the Mariana Trench, Earth's deepest trench, by soft robots inspired by deep-sea organisms, showcasing the potential of soft robots for extreme deep-sea exploration. However, deep-sea extreme pressure significantly alters the structure and properties of robot materials, affecting their detectability. In this study, to ensure soft robots maintain excellent performance even in such extreme environments, meticulous attention is devoted to these pressure-induced changes before designing them. The results demonstrate that applying pressure (416.67 MPa) can induce the glass transition in silicone rubber (SR) even at room temperature. Unlike the traditional realization mechanism (cooling material to its glass transition temperature (Tg)), the realization mechanism through pressurizing is reported that adjusting the Tg of target material to approach a specific temperature. Furthermore, the different transition mechanisms under the two realizations are also revealed. Based the dynamic analysis of SR under extremely low temperature and high pressure, the glass transition pressure (Pg) is proposed, and the glass transition strategy by jointly regulating temperature and pressure to construct equivalent extreme pressure environment is also investigated. This study, taking SR as the case study, holds significant importance for the future development of extreme pressure-resistant soft robots for extreme environment exploration

    Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets

    Get PDF
    ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6(-/-)) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6(-/-) pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6(-/-) pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6(-/-) pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6(-/-) pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. Author summaryThe lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development

    Effect of Al2O3 Content on High-Temperature Oxidation Resistance of Ti3SiC2/Al2O3

    No full text
    Considering the lack of an effective anti-oxidation protective layer for the oxidation process of Ti3SiC2, an in situ synthesis of Ti3SiC2 and Al2O3 was designed. Thermally stable Al2O3 was used to improve the high-temperature oxidation resistance of Ti3SiC2. Samples without TiC were selected for the oxidation test, and the oxidation morphology and weight gain curves of the oxidized surface in air at 1400 °C are reported. The change in the oxidation behavior occurred 4 h after oxidation. The addition of Al2O3 changed the composition of the oxide layer and compensated for the lack of a dense protective layer during Ti3SiC2 oxidation. Moreover, after 4 h of oxidation, the newly generated Al2TiO5 and the composite layer formed by diffusion were the main reasons for the large difference in the final weight gain between the two sets of samples
    corecore