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Radiomics has become a research field that involves the process of converting
standard nursing images into quantitative image data, which can be combined
with other data sources and subsequently analyzed using traditional biostatistics
or artificial intelligence (Al) methods. Due to the capture of biological and
pathophysiological information by radiomics features, these quantitative
radiomics features have been proven to provide fast and accurate non-invasive
biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment
response monitoring, and tumor biology. In this review, radiomics has been
emphasized and discussed in lung cancer research, including advantages,
challenges, and drawbacks.
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Introduction

Lung cancer is the most widespread cancer worldwide and is the primary cause of
cancer-related deaths. As per the latest global cancer statistics report, in 2020, there will be
about 2.2 million new cases of lung cancer (making up around 11.4% of all cancers) and
approximately 1.8 million deaths (constituting about 18.0% of all cancers) (Pishgar et al.,
2018; Sung et al., 2021). Hence, timely diagnosis and treatment continue to be crucial for
enhancing the survival rate of individuals with lung cancer.

The advancement of imaging technology has led to a rapid increase in medical imaging
data for diagnosing, staging, planning treatments, and evaluating responses in lung cancer
patients. While conventional interpretations provide insights into lung cancer
characteristics, researchers have demonstrated that a considerable amount of biological
and prognostic information remains concealed within the images. Radiomics pertains to the
extraction of numerous high-dimensional quantitative image features from images, creating
a database for analysis (Lambin et al., 2012). Through radiomics, exceptionally valuable
cancer-related information can be captured, which might be overlooked or not discernible to
the naked eye.

The notion of radiomics was initially introduced by Dutch scholar Lambin (Lambin
et al., 2012) in 2012. It involves the extraction of an array of features from medical images
and employs statistical and machine learning techniques to identify the most significant
imaging features for clinical information analysis, disease identification, tumor grading, and
staging. Imaging technology has overcome the limitation of solely relying on subjective
image interpretations by physicians, significantly enhancing the practical value of medical
images in clinical settings. The process generally encompasses five steps (Mayerhoefer et al.,
2020; McCague et al., 2023): image acquisition and preprocessing, image segmentation,
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image feature extraction, dimensionality reduction and feature
selection, model development, and application. The advantage of
this non-invasive examination lies in radiomics features reflecting
not only the tissue’s visible characteristics but also its cellular and
molecular attributes, thus offering a more comprehensive
understanding of the entire tumor. Imaging features can also
serve as an objective and quantitative biomarker for
distinguishing between different types of tumors, analyzing
tumor characteristics, and predicting prognosis. The radiomics
workflow was summarized in Figure 1.

Diagnosis

Distinguishing between benign and malignant pulmonary
nodules solely based on clinician experience is challenging.
Radiomics-driven qualitative diagnosis of pulmonary nodules
assists clinicians in determining optimal treatment plans. Scholars
have recently explored using multiple classifiers to combine model
pairs for predicting primary pulmonary solid nodule malignancy.
Kamiya et al. (Kamiya et al., 2014) initiated this exploration,
encompassing 93 pulmonary nodules (72 malignant and
21 benign). They computed kurtosis and skewness from density
histograms, revealing higher kurtosis in malignant than benign
nodules. ROC curves displayed substantial area under the curve

values (0.71–0.83). Choi W et al. (Choi et al., 2018) established an
SVM-LASSO model using radiomics for low-dose CT-based
pulmonary nodule prediction. Lesions were identified in the
American College of Radiology’s Lung CT screening reporting and
data system (Lung-RADS). The SVM-LASSOmodel achieved higher
accuracy (84.1%) than the Lung-RADS model (72.2%). Chen et al.
(Chen et al., 2018) extracted radiomics features for differentiating
42 malignant and 33 benign pulmonary nodules. Employing leave-
one-out cross-validation, they selected four highly correlated
features through sequential forward selection (SFS), constructing
a support vector machine (SVM) prediction model. This SVM
model achieved 84.0% accuracy, 92.9% sensitivity, and 72.7%
specificity. Tu et al. (Tu et al., 2018) discovered that greater
average standard deviation in CT scans corresponded to reduced
uniformity and elevated “entropy,” indicating a higher likelihood of
benign nodules. Their Logistic regression classifier reached peak
accuracy at 79%. This classifier outperformed the LUNGRADS
system established for lung cancer screening. Follow-up
examinations diagnosed more ground glass nodules, especially
mixed ones, as malignant rather than solid nodules.
Balagurunathan et al. (Balagurunathan et al., 2019) analyzed
low-dose CT images from the US National Lung Screening Trial
database and determined that radiomics features improved nodule
detection accuracy compared to size and shape descriptions in
conventional images. The highest AUROC reached 0.83 by

FIGURE 1
Visualization of the steps in the radiomics workflow.
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combining features from all categories. Beig et al. (Beig et al., 2019)
conducted a radiomics study on 290 patients with lung
adenocarcinoma and granuloma presenting as solitary lung
nodules. They evaluated the capability of imaging features to
distinguish adenocarcinoma and granuloma using features from
the nodule’s surroundings, internal features, and combined
surrounding and internal features. The results displayed AUC
values of 0.74 for surrounding nodule features, 0.75 for internal
nodule features, and 0.80 for combined surrounding and internal
features. Huang et al. (Huang et al., 2018) performed a matched
case-control study using NLST data to evaluate the value of a novel
computer-aided diagnosis (CAD)algorithm that analyzes texture
features of nodules as well as surrounding lung tissues. In the
validation cohort, the area under the receiver operating
characteristic curve for CAD was 0.9154. The sensitivity,
specificity, PPV, and negative predictive value of CAD and the
three radiologists’ combined reading were 0.95, 0.88, 0.86, and
0.96 and 0.70, 0.69, 0.64, and 0.75, respectively. Gao et al. (Gao et al.,
2020)extracted 1,344 3D texture features from pulmonary nodules,
achieving a classifier sensitivity of 98% for distinguishing benign
and malignant nodules using support vector machines. This
sensitivity was markedly higher than that of three clinicians
(73% specificity). Sun et al. (Sun et al., 2017) compared the
efficacy of CNN, DBN, autocoding, transfer learning, and
radiomics methods in distinguishing benign and malignant
pulmonary nodules. CNN exhibited superior performance,
achieving the highest AUC of 0.899 ± 0.018. Zhang et al. (Zhang
et al., 2020a) combined SE network and ResNeXt to form SE-
ResNext, significantly enhancing feature discriminative power. This
fusion achieved an accuracy of 91.67% for distinguishing benign
and malignant pulmonary nodules, with an AUC as high as 0.960.
Another study by Cherezov et al. (Cherezov et al., 2018) extracted
radiomic features from baseline and follow-up screens and
performed size-specific analyses to predict lung cancer incidence
using three nodule size classes. Once used images and data from the
National Lung Screening Trial (NLST), malignancy prediction
accuracy was improved from 74.7% to 81.0% by implementing
nodule size–specific models. Zhao et al. (Zhao et al., 2021a)
classified pulmonary cryptococcosis and lung adenocarcinoma in
patients with solitary pulmonary solid nodules, constructing a
nomogram model incorporating clinical features, imaging signs,
and radiomics scores. The AUC values were 0.91 and 0.89,
respectively, facilitating clinical decision-making. Radiomics can
effectively capture distinctions between preinvasive and invasive
lesions within pure ground glass nodules (pGGN). Building a
classification model based on radiomics features enhances the
preoperative prediction accuracy of pGGN’s pathological
aggressiveness. For instance, SVM, naive Bayes classifier, and
logistic regression classifier demonstrated AUCs of 0.822, 0.848,
and 0.874, respectively. Conversely, AUCs derived from lesion size
and average CT value predictions stood at mere 0.726 and 0.786
(Wang et al., 2017). Shen et al. (Shen et al., 2020) employed SVM,
random forest (RF), logistic regression (LR), extreme learning
machine, and K-nearest neighbor (KNN) algorithm, post feature
selection. They constructed five classifier models, then fused all
prediction outcomes to determine nodule nature. This approach,
incorporating texture, wavelet, and gray level features, significantly
facilitated distinguishing between benign and malignant solid

pulmonary nodules, achieving an accuracy of 92% (summarized
in Table 1).

Tumour histology

According to the 2015 WHO histological classification for lung
cancer (Wu et al., 2016), lung cancer can be categorized into 9 types. In
instances where CT-guided needle biopsy is not feasible, postoperative
pathological sections are the sole means of obtaining pathology data.
Presently, there’s no non-invasive method for pathologic classification
before biopsy or surgery. In contrast to pathology, CT offers
affordability and non-invasiveness, with radiomic analysis through
artificial intelligence’s extensive data providing a preoperative
opportunity for classifying pathology types. Oncologists consistently
strive to discern cancer cell subtypes in lung cancer patients. Wu et al.
analyzed 440 radiological features from CT images of NSCLC to
classify ADC vs SCC, achieving an accuracy of 0.7 and an AUC of 0.72
(Haga et al., 2018). Haga et al. utilized a volume of interest method to
categorize early-stage NSCLC subtypes among different observers,
with averaged AUC values at 0.725 ± 0.070 (Zhu et al., 2018). Zhu et al.
employed the LASSO logistic regression model, selecting five key
features to create a radiomic signature for histological subtype
classification. In validation cohorts, the AUC for differentiating
lung adenocarcinoma (ADC) vs squamous cell carcinoma (SCC)
was 0.893 (Lu Lin et al., 2019). A multiphasic CECT study
displayed AUC values of 0.857, 0.855, and 0.864 for radiomics
models in classifying ADC vs SCC in non-enhanced, arterial, and
venous phases, respectively (Wu et al., 2016). Wu et al. (Lu Lin et al.,
2019) extracted 5 image omics features to build a predictive model,
yielding an AUC of 0.72. Linning et al. extracted 3 radiomic features,
resulting in AUC values of 0.801, 0.834, and 0.864. Lu et al. reported
radiomics models’ diagnostic performance (AUC) as 0.741 (SCLC vs
NSCLC), 0.822 (AD vs SCLC), 0.665 (SCC vs SCLC), and 0.655 (ADvs
SCC) in histopathologic lung cancer subtype classification (Wu et al.,
2016). Chen et al. (Chen et al., 2020a) explored CT images of
peripheral lung cancer using histogram-based features (max, min,
mean, range, entropy, variance, skewness, kurtosis), gray co-incidence
matrix, gray stroke length matrix, gray size area matrix, and
neighborhood gray tone difference matrix. The CT radiology model
based on neural network classification effectively distinguished SCLC
(n = 35) from NSCLC (n = 34), yielding an AUC of 0.93.

Tumour staging

Previous studies have explored the role of AI in lung cancer
staging, encompassing the prediction of lymph node and distant
metastasis based on primary tumor characteristics. In a study
involving 657 NSCLC patients (He et al., 2017), researchers
established a preoperative CT radiomics signature with a
commendable capability to forecast postoperative pathological
staging. The radiomics prediction model’s AUCs in the training
and validation sets were 0.715 and 0.724, respectively, showcasing its
value in identifying early and advanced NSCLC patients
preoperatively. Aerts et al. (Aerts et al., 2014) extracted
440 image features from CT data of 1,019 lung and head and
neck cancer patients, noting a correlation of 0.6 between texture
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features and TNM staging in lung cancer, potentially aiding in
auxiliary detection for tumor staging. Chen’s work integrated gross
and 6 mm peritumoral volume (GPTV6) radiomics features and
independent clinical predictors into a nomogram, effectively
predicting lymph node metastasis and prognosis in clinical stage
IA NSCLC patients, achieving an AUC of 0.85 (Chen et al., 2023).
Zhao proposed a cross-modal deep learning system successfully
blending clinical knowledge and CT images into a 3D neural
network, achieving an AUC of 0.926 for predicting LN metastasis
in clinical stage T1 lung cancer (Pommier et al., 2010). Sushant’s
approach integrated clinical parameters and CT radiomics from
GTV, PTV, and LN, enhancing the predictive power of the
nomogram in cT1N0M0 adenocarcinoma patients, with an AUC
of 0.79 (95% CI 0.66–0.93) in external validation (Das et al., 2021).
Yoshihisa investigated CT-based radiomics with AI for predicting
pathological lymph node metastasis in clinical stage 0–IA NSCLC.
Multivariate analysis revealed that clinical stage IA3, solid part size,
and average solid CT value were independently associated with pN.
The ROC yielded 0.761, with a sensitivity, specificity, and negative
predictive values of 69%, 65%, and 94% in the entire cohort,
respectively (Shimada et al., 2023). Yuan’s findings (Yuan et al.,
2022) revealed that both the enhanced and unenhanced CT
radiomics models had five features with the potential to predict
hilar and mediastinal lymph node metastases in solid nodular lung
cancer, achieving AUCs of 0.811 and 0.803, respectively. Cong
utilized a venous computed tomography radiomics model for
lymph node metastasis prediction in non-small cell lung cancer,
yielding a validation group AUC of 0.73 (95% CI: 0.70–0.76) (Cong
et al., 2020). Zhang (Zhang et al., 2023) demonstrated that a

nomogram integrating multi-view radiomics, deep learning, and
clinical features efficiently quantitatively predicted presurgical
N2 diseases in clinical stage I-II NSCLC patients. Combined
models displayed superior diagnostic performance compared to
models using only clinical or image risk factors (AUC for
combined models was 0.88). Wang’s work indicated that
radiomic signatures from gross tumor volume (GTV) and
peritumoral volume (PTV) exhibited strong predictive capabilities
for LN metastasis, achieving AUCs of 0.829 (95% CI, 0.745–0.913)
and 0.825 (95% CI, 0.733–0.918). The radiomic nomogram attained
an AUC of 0.869 (95% CI, 0.800–0.938), facilitating convenient
preoperative LN metastasis prediction in T1 peripheral lung
adenocarcinomas (Wang et al., 2019a). Ma’s research introduced
a deep learning signature based on Swin Transformer, achieving
AUCs of 0.948–0.961 in predicting LN metastasis. Calibration
curves indicated good fit between the DL signature’s predicted
probabilities and observed LN metastasis probabilities (Ma et al.,
2023). Zheng identified five CT radiomic characteristics significantly
correlated with LNM. The radiomic nomogram, incorporating these
characteristics along with RDW and CT-based LN status, displayed
satisfactory discrimination and calibration in training (AUC 0.79;
95% CI 0.69–0.89) and validation cohorts (AUC 0.70; 95% CI
0.50–0.89) (Zheng et al., 2022). Yang et al. (Yang et al., 2018)
combined preoperative venous phase enhanced CT images’
radiomics features with clinical features, achieving AUC values of
0.911 and 0.871 for predicting lymph node metastasis. Ferreira
Junior et al. (Ferreira-Junior et al., 2020) calculated various
radiomic features significantly associated with distant metastasis,
nodal metastasis, and histology, yielding AUC values of 0.92 and

TABLE 1 Radiomics studies in early detection and lung cancer screening.

Study Image
modality

Dataset Analytical
method

Single center or
multi- center

Reported
performance

Kamiya et al. (2014) CT 93 patients (72 malignant and 21 benign) Unknown Single AUC 0.71-0.83

Choi et al. (2018) CT 72 patients (31 benign and 41 malignant) SVM + LASSO Single AUC of 0.84

Chen et al. (2018) CT 76patients (42 malignant and 33 benign) SVM Single AUC of 0.84

Tu et al. (2018) CT 122patients (74 malignant and 48 benign) logistic classification Single AUC of 0.79

Balagurunathan et al.
(2019)

CT 588 patients (196 maliganant and 392 benign) linear classifiers Single AUC of 0.83

Beig et al. (2019) CT 290 patients (145 maliganant and 145 benign) CNN Single AUC of 0.8

Huang et al. (2018) CT 186 patients (90 maliganant and 96 benign) Random forest
classifier

Single AUC of 0.91

Gao et al. (2020) CT 285patients (223 maliganant and 62 benign) SVM Single AUC of 0.73

Sun et al. (2017) CT 1,018 cases from Lung Image Database
Consortium (LIDC) public lung cancer

CNN multi- center AUC of 0.89

Zhang et al. (2020a) CT 1,004 cases (450 malignant and 554 benign)
nodules from Lung Nodule Analysis

Deep learning multi- center AUC of 0.96

Cherezov et al. (2018) CT 160 incidence cases and 307 nodule-positive
controls

Deep learning Single AUC of 0.94

Zhao et al. (2021a) CT 426patients (213 maliganant and 213 benign) LASSO Single AUC of 0.91

Wang et al. (2017) CT 102patients (42 maliganant and 60 benign) logistic classification
、SVM

Single AUC of 0.72

Shen et al. (2020) CT 342patients (171 maliganant and 171 benign) five classifier models Single AUC of 0.92
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0.84 for predicting M and N stages, respectively. Fabian’s research
showcased that PET/CT image radiomics features and transfer-
learning deep radiomics features could predict non-invasive
N-staging with the best outcome [AUC 0.871 (0.865–0.878)]
using the random forest model (Laqua et al., 2023). The PET/
CT-based radiomics nomogram exhibited predictive ability for
occult lymph node metastasis in NSCLC, with AUCs of 0.884 in
the training set and 0.881 in the testing set (Qiao et al., 2022).

On the other hand, certain studies have aimed to directly analyze
lymph nodes for distinguishing between benign and malignant
conditions. For instance, Bayanati et al. (Bayanati et al., 2015)
conducted radiomics analysis of mediastinal lymph nodes in lung
cancer patients, discovering that the fusion of texture and
morphological features could enhance N staging accuracy (AUC =
0.87). Moitra et al. (Moitra andMandal, 2019) explored convolutional
neural networks (CNN) and combined CNN with recurrent neural
networks (RNN) for automatic AJCC staging of non-small cell lung
cancer, achieving an accuracy of 92.91%. Xie’s work introduced
a PET/CT nomogram that integrates Rad-Score and SUVmax,
improving LN metastasis diagnosis in non-small cell lung cancer
(NSCLC) patients. The training cohort displayed an AUC of 0.881
(95%CI, 0.834–0.928), while the testing cohort demonstrated an AUC
of 0.872 (95% CI, 0.797–0.946) (Xie et al., 2021).

Tumour genotype

Lung cancer patients harboring gene mutations can significantly
benefit from targeted therapy. However, the current approach to
detecting gene mutation status relies primarily on biopsy or
cytological analysis, which is invasive. Moreover, challenges such as
biopsy sampling errors, improper procedures, patient non-compliance,
and sampling difficulties can impede obtaining sufficient samples for
testing. Given these limitations, there’s a need for a reproducible,
straightforward, safe, and non-invasive method to preoperatively
determine gene mutation status. Radiomics enables the extraction of
tumor features from medical images in a high-throughput manner,
revealing aspects not discernible by the human visual system. In clinical
applications, radiomics models hold promise in predicting the
mutation status of lung cancer genes, furnishing image-derived
biomarkers for personalized targeted therapy.

Gene mutation

Currently, imaging omics studies for predicting lung cancer gene
mutations primarily focus on the EGFR gene mutations, which are
the most prevalent mutations in clinical practice. The mutation rates
stand at 40%–50% for Asian NSCLC patients and 10%–20% for non-
Asian patients (Lilenbaum and Horn, 2016; Liu et al., 2016). Aerts
et al. (Aerts et al., 2016) non-invasively extracted data from pre-
treatment CT images of lung cancer patients to assess EGFR
mutation status and predict tumor response to targeted drugs
like gefitinib. Their findings indicated that tumor volume,
texture, and gradient characteristics could predict EGFR
mutation status. Tu et al. examined 404 NSCLC patients and
found that radiomics signatures exhibited superior performance
(AUC = 0.762 and 0.775 in training and validation cohorts)

compared to clinical and morphological features in predicting
EGFR mutations (Tu et al., 2019). Similarly, Lu et al.’s
retrospective study involving 104 patients demonstrated that
radiomic models (AUC = 0.837) outperformed qualitative CT
feature-based models (AUC = 0.768) (Lu et al., 2020). The
integration of clinical and morphological image features further
enhanced model performance with increased AUC values (Tu et al.,
2019; Lu et al., 2020). Rios et al. (Rios Velazquez et al., 2017) reached
a similar conclusion in their study, discovering correlations between
EGFR mutation status and certain features in wavelet analysis and
gray co-occurrence matrix. They explored the potential connection
between high-dimensional microscopic features and tumor image
morphological characteristics. Texture features like light texture
furrows and uniform overall gray distribution were correlated
with EGFR mutation. Numerous studies have investigated these
associations. Wang et al. (Wang H. et al., 2019) developed a
predictive model to distinguish between EGFR with exon
21 mutation and wild-type lung cancer, achieving accuracy,
sensitivity, and specificity rates of 0.87, 0.946, and 0.738,
respectively. Zhang et al. (Zhang et al., 2020b) investigated PET-
CT images of 248 NSCLC patients before treatment, observing a
relationship between lower peak normalized intake value and EGFR
mutation. By extracting texture features from PET-CT images and
combining metabolism and structure texture features, they
established an EGFR mutation prediction model using logistic
regression. The AUC in the training set was 0.79, and in the
validation set, it reached 0.85, confirming PET-CT’s value in
predicting EGFR mutation types in NSCLC patients. Yipp et al.
(Yip et al., 2017) discovered PET imaging features capable of
detecting EGFR mutation status, but no features linked to KRAS
mutation were identified.

Liu et al. discovered that 3D radiomics features from 11 lung
adenocarcinoma tissues correlated with EGFR mutations, and the
integration of relevant CT feature parameters and clinical features
significantly enhanced EGFR prediction accuracy (Liu et al., 2016).
Rios et al. demonstrated that CT texture features in lung
adenocarcinoma patients could effectively differentiate between
EGFR and KRAS mutated gene positivity (AUC = 0.80) (Rios
Velazquez et al., 2017). Agazzi et al. (Agazzi et al., 2021)
formulated a CT-based classification model to distinguish EGFR
mutated, ALK mutated, and non-mutated tumors. They discovered
that mutation types were associated with skewness, with EGFR
mutated tumors displaying the highest skewness, while ALK
rearranged tumors exhibited the lowest value. Tumors without
mutations displayed median values, resulting in an accuracy of
about 82% for the model. Wang et al. (Wang et al., 2019c)
examined 61 pulmonary nodules in 51 patients with early lung
adenocarcinoma. They selected 13 image omics features and
employed a support vector machine (SVM) to predict tumor
mutation load and the status of certain driving mutations (EGFR
and TP53) in early lung adenocarcinoma patients. The model
demonstrated feasibility and effectiveness, with the potential for
further improvement when combined with clinical data. SHIRI et al.
(Shiri et al., 2020) identified the potential of imaging features in
predicting and identifying EGFR and KARS gene mutations in
150 NSCLC patients. Some researchers suggest that traditional
CT imaging signs could aid in predicting EGFR mutation
presence in advanced lung adenocarcinoma.
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Yamamoto et al. (Aerts et al., 2016) identified correlations
between signs like tumor location and significant pleural effusion
with ALK gene mutation. Rizzo et al. (Rizzo et al., 2016) found that
pleural effusion presence was associated with ALK gene mutation,
while tumor location remained independent of ALK mutation. Song
et al. demonstrated that radiomics-derived machine learning models
could identify ALK mutations in lung adenocarcinoma with 76%
accuracy (Song et al., 2020). Yoon et al. (Yoon et al., 2015) exhibited
the ability to identify adenocarcinomas with ALK, ROS1, and/or
RET fusion phenotypes using CT and PET imaging, achieving a
sensitivity of 0.73 and specificity of 0.70. Prediction was achievable
using CT radiomics, achieving an AUROC of 0.914 when combined
with clinical and CT semantic features, surpassing performance
based solely on clinical (0.735) or radiomic features (0.890) (Hao
et al., 2022). The PET-CT radiomics model achieved an AUROC of
0.88, with no improvement observed upon incorporation of clinical
features (Hao et al., 2022) (summarized in Table 2).

Immune microenvironment and tumor
mutation burden

Radiomics analysis offers a non-invasive means to
comprehensively assess the entire tumor in medical images,

capturing tumor characteristics. Some studies have demonstrated
that baseline imaging omics analysis can effectively predict PD-L1
expression levels and TMB status. Tian et al. (Tian et al., 2021)
performed radiomics analysis on CT scans of 939 NSCLC patients
with stages IIB to IV prior to ICIs treatment, constructing a model to
evaluate PD-L1 expression. In the training, validation, and test sets,
the model predicted high PD-L1 expression (>50%) with AUC
values of 0.78, 0.71, and 0.76, respectively, aiding in identifying
NSCLC populations likely to benefit from immunotherapy. He et al.
(He et al., 2020) divided a dataset of 327 NSCLC patients with
known TMB status into high and low TMB groups based on a critical
value of 10 mutations per Mb base. They established a TMB
radiomic biomarker (TMBRB) to distinguish between these
groups, with AUC values of 0.85 and 0.81 in the training and
test sets, respectively. Subsequently, Wen et al. (Wen et al., 2021)
included 120 advanced NSCLC patients and developed a
multimodal prediction model for PD-L1 expression and TMB
status by combining clinical factors with CT morphological and
baseline imaging features, outperforming the simple radiomics
model. The AUC values for predicting PD-L1 expression in the
training and test sets were 0.839 and 0.793, respectively, and for
predicting TMB status, they were 0.818 and 0.786. Radiomics-based
prediction of PD-L1 positivity achieved an AUROC of 0.76 for PD-
L1 ≥ 50%. However, due to the lack of consensus on PD-L1

TABLE 2 Radiomics studies in NSCLC with an aspect of biology.

Study Image
modality

Targeted
gene

Dataset Analytical method Reported
performance

Aerts et al. (2016) CT EGFR 47 patients with early-stage NSCLC Logistic regression AUC = 0.67

Tu et al. (2019) CT EGFR 404 patients with NSCLC (243 cases in the training
cohort and 161 cases in the validation cohort

Mann-Whitney U test or
Chi- square test

AUC = 0.79

Lu et al. (2020) CT EGFR 104 lung adenocarcinoma patients Logistic regression AUC = 0.83

Rios velazquez
et al. (2017)

CT EGFR 763 lung adenocarcinoma patients Wilcoxon test AUC = 0.69

Wang et al.
(2019a)

CT EGFR 309 lung adenocarcinoma patients Mann-Whitney U test or
Chi- square test

AUC = 0.78

Zhang et al.
(2020b)

PET/CT EGFR 248 NSCLC patients LASSO AUC = 0.85

Yip et al. (2017) PET/CT EGFR 348 NSCLC patients Wilcoxon rank-sum test AUC = 0.5

Agazzi et al.
(2021)

CT EGFR and ALK 84lung adenocarcinoma patients ANOVA AUC = 0.817

Wang et al.
(2019b)

CT EGFR and TP53 51 early stage lung adenocarcinoma patients SVM AUC = 0.606

Shiri et al. (2020) PET/CT EGFR and KRAS 211NSCLC patients Machine Learning AUC = 0.69

Song et al. (2020) CT ALK 335 lung adenocarcinoma patients Mann-Whitney U test or
Chi- square test

AUC = 0.80–0.88

Rizzo et al. (2016) CT EGFR, K- RAS,
and ALK

285 NSCLC patients Wilcoxon test AUC = 0.82,0.87,0.65

Song et al. (2020) CT ALK 335 lung adenocarcinoma patients Mann-Whitney U test or
Chi- square test

AUC = 0.83–0.88

Yoon et al. (2020) CT ALK, ROS
1and RET

539 lung adenocarcinoma patients t-test or Chi- squared test sensitivity and
specificity,0.73and0.7 0

Yoon et al (2022) CT ALK 193 patients with NSCLC SVN AUC = 0.914
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expression cut-offs, lower thresholds are often used in clinical
practice, such as ≥ 1% (Hellmann et al., 2019; Mok et al., 2019).
Another study developed a CT-radiomics model for different PD-L1
levels, achieving AUROC of 0.950, 0.934, and 0.946 for PD-L1 < 1%,
1–49%, and≥50%, respectively (Wang et al., 2022). Since PD-L1
expression is dynamic and variable, adopting a fixed threshold is
considered overly simplistic and susceptible to data variability
depending on the IHC assay used (Tsimafeyeu et al., 2020).

Clinical outcome prediction

Predicting treatment response or prognosis is challenging in
lung cancer. Radiomics has been successfully employed to predict
the prognosis of lung cancer patients undergoing surgery, radiation
therapy, or targeted therapy. Crucial prognostic factors include local
recurrence and distant metastasis. Effectively predicting risk factors
for these outcomes holds significant importance.

Radiotherapy

The assessment of radiotherapy sensitivity and prediction of
radiation-induced damage are essential for tailoring individualized
treatment plans for lung cancer patients. Huynh’s study
demonstrated that certain pre-treatment CT radiomics features
could predict the efficacy of stereotactic radiotherapy for patients
with stages I-II non-small cell lung cancer, outperforming
traditional CT indicators (Huynh et al., 2016). Paul et al.
developed a multiple regression model utilizing four radiomics
features to predict radiotherapy treatment effects in 122 patients
with stages I-II non-small cell carcinoma, aiming to minimize side
effects and shorten treatment durations. Mattonen et al. found that
regular CT radiomics analysis could detect subtle changes that might
go unnoticed by the human eye when lung cancer recurred, enabling
differentiation from imaging changes due to radiation injury
(Mattonen et al., 2016). Paul et al. demonstrated a significant
correlation between changes in daily CT characteristic parameters
of radiotherapy patients and radiation-induced damage (Paul et al.,
2017). In summary, by establishing relevant clinical models based on
CT radiomics data, individualized radiotherapy guidance can be
provided for lung cancer patients, enhancing the safety of their
radiotherapy.

For patients who are not suitable candidates for surgery, SABR is
the recommended treatment for peripherally located stage I NSCLC,
and if SABR is not available, a hypofractionated radiotherapy
regimen with a high biologically equivalent dose is advised.
Stereotactic body radiation therapy (SBRT) is the preferred
radiation treatment modality for lung cancer, particularly for
small local lesions in inoperable patients (Postmus et al., 2017;
Pentheroudakis and Committee, 2020). Radiomic features have
demonstrated the capability to predict outcomes in SBRT-treated
patients that conventional imaging measures may not foresee
(Huynh et al., 2016). Numerous studies have aimed to predict
various clinical endpoints such as local control, disease-free
survival, and overall survival with remarkable accuracy (Hosny
et al., 2018; Yu et al., 2018). For SBRT-treated NSCLC, CT deep
learning features have shown potential to predict SBRT treatment

failure and guide dose reduction (Lou et al., 2019). A classifier
incorporating nine radiomic features, including gray level co-
occurrence matrix (GLCM) texture features and first-order
features, exhibited a detailed dose-response relationship at
different time points after SBRT (Moran et al., 2017), particularly
distinguishing between local failure and radiation-induced lung
injury (RILI) (Mattonen et al., 2014). Similarly, PET-CT
radiological features such as PET IC2 and CT flatness are
correlated with tumor recurrence after SBRT and have
demonstrated predictive capabilities for tumor recurrence in
external validation, with an AUROC of 0.905 (Dissaux et al., 2020).

Chemotherapy

The evaluation of chemotherapy efficacy for lung cancer is
primarily based on the RECIST standard using CT images.
However, RECIST alone may not capture early chemotherapy
effects effectively (Shang et al., 2016). Pathological response after
chemotherapy, based on the extent of residual tumor tissue, better
reflects the efficacy of chemotherapy and can predict the survival
rate of lung cancer patients (Hellmann et al., 2014). Many studies
have validated the application of radiomics in predicting
chemotherapy outcomes for non-small cell lung cancer (NSCLC)
patients. In a study involving 85 patients with resectable locally
advanced (stage II-III) NSCLC, radiomics analysis was performed
on thoracic primary tumors and lymph nodes to predict
pathological complete response (pCR) after neoadjuvant
chemoradiotherapy. Image-residual features, describing features
like sphericity of the primary tumor and homogeneity of lymph
nodes, were found to significantly predict pCR. Moreover, lymph
node phenotype information exhibited stronger predictive power for
pathological remission compared to radiomics features from the
primary tumor (Coroller et al., 2017). Coroller TP examined CT
imaging features of stage II to III NSCLC patients before
neoadjuvant chemoradiotherapy and correlated them with tumor
pathological response after surgery. Several characteristic
parameters were found to be significantly associated with total
pathological residual lesions (Coroller et al., 2016). CT imaging
features have demonstrated a strong correlation with the degree of
pathological response to chemotherapy in lung cancer patients,
which can guide individualized chemotherapy approaches. For
instance, CT volume features were utilized as predictors of
survival in patients with limited-stage small cell lung cancer
(SCLC) after chemoradiotherapy, and the maximum three-
dimensional tumor diameter was significantly associated with
local recurrence, distant metastasis, and overall survival (Kamran
et al., 2020). Fusion of features from peritumoral regions of different
distances improved the accuracy of predicting chemotherapy
response in non-small cell lung cancer patients, achieving an
AUROC of 0.85 (Chang et al., 2022). In patients receiving
radiotherapy, CT-based radiomics, particularly the percentage of
GLSZM (gray-level size zone matrix) area, demonstrated the
capability to predict disease recurrence within 2 years after
treatment, with an AUROC of 0.673. When combined with
clinical characteristics, the AUROC further increased to 0.738
(Huynh et al., 2017). Additionally, for the prediction of efficacy
in small cell lung cancer (SCLC) after chemotherapy, a radiomics
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signature constructed from CT images prior to and after two cycles
of chemotherapy achieved an AUROC of 0.797, outperforming
prediction using known clinical features (Wei et al., 2019).

Targeted therapy

Targeted therapy has become a crucial treatment approach for
lung cancer patients with driver gene mutations. Radiomics analysis
of CT images has shown promise in predicting the efficacy of
targeted therapies for these patients. Aerts et al. conducted a
study comparing CT image characteristics of NSCLC patients
before and after gefitinib treatment. By analyzing images from
47 patients with early-stage NSCLC, they extracted various
imaging and volume features. The study demonstrated that
radiomics features at baseline and the incremental changes in
features between two examinations were predictive of EGFR
mutation status. The incremental changes between these features
showed the highest predictive significance, with an area under the
curve (AUC) range of 0.74–0.91. This study not only highlighted the
association between imaging features and tumor phenotype but also
explored changes in imaging features before and after targeted
therapy in NSCLC patients with different EGFR mutation
statuses (Aerts et al., 2016). Another study utilized CT imaging
features to predict the efficacy of crizotinib treatment in ALK
rearranged NSCLC patients. This research involved extracting
481 imaging features from CT images of 63 stage IV patients.
Eventually, three features were selected to construct a predictive
test model for progression-free survival (PFS). The model achieved
an AUC of 0.824 for predicting PFS, indicating the potential of CT
imaging as a predictor for the efficacy of targeted therapies (Li et al.,
2020). In conclusion, CT imaging features hold promise as
predictors for individualized targeted therapy outcomes in lung
cancer patients with driver gene mutations. These findings
suggest that radiomics analysis of CT images can play a crucial
role in guiding targeted treatment approaches for lung cancer
patients.

Immunotherapy

Valerio et al. conducted a study involving 59 NSCLC patients
treated with PD-1 inhibitors and found that imaging features alone
were effective in predicting treatment response. This suggests that
radiomics analysis of imaging features can provide valuable insights
into the efficacy of immunotherapy (Rios Velazquez et al., 2017; Yip
et al., 2017). Sun et al. established a Radiomics score (RS) that could
predict local CD8+ T lymphocyte infiltration in NSCLC patients,
enabling the distinction between immune inflammatory and
immune desert tumor immune types. The model achieved an
AUC of 0.76 and was further correlated with ORR and OS in
patients receiving immune checkpoint inhibitors. This indicates
that radiomics analysis can predict the efficacy of
immunotherapy by assessing the local tumor microenvironment
(Sun et al., 2018). In another study by Sun et al., which included
68 patients with metastatic solid tumors receiving combination
therapy of palizumab and stereotactic radiation therapy (SBRT),
low RS tumors were associated with higher local tumor control

failure rates and lower reactivity to SBRT. This translated to shorter
median PFS and OS in patients with low RS tumors. This suggests
that RS can assist clinicians in predicting which patients will benefit
from combination therapy and avoid immunotherapy-related
toxicity (Korpics et al., 2020). Trebeschi et al. collected data from
cases of advanced malignant melanoma and NSCLC treated with
ICIs. They built a machine learning classification model using
radiomics features extracted from pre-treatment enhanced CT
images of lesions to distinguish treatment response. The AUC
value of the model for predicting treatment response in NSCLC
lesions was 0.83, and a difference in 1-year survival rate between
responders and non-responders was observed (Trebeschi et al.,
2019). Tunali et al. retrospectively collected data from
228 NSCLC patients to predict hyperprogressive disease (HPD)
occurrence. They built an HPD prediction model based on imaging
features of the tumor interior and peri-tumor areas, achieving an
AUC value of 0.843. Incorporating clinical variables further
increased the AUC to 0.865 (Tunali et al., 2019). Vaidya et al.
performed baseline radiomics analysis on 109 NSCLC patients,
delineating internal and peritumoral areas of the tumor. Their
HPD prediction model achieved AUC values of 0.85 and 0.96 in
the training and test sets, respectively, confirming the potential of
baseline radiomics markers in identifying patients at risk of HPD
(Lo Russo et al., 2020; Vaidya et al., 2020). Mu et al. included
194 patients with advanced NSCLC and extracted multi-
parameter imaging features from PET, CT, and PET/CT
fusion images to distinguish between durable clinical benefit
(DCB) and no durable clinical benefit (NDB) based on PFS.
The model achieved AUC values of 0.86, 0.83, and 0.81 in the
training set, retrospective test set, and prospective test set,
respectively (Mu et al., 2020)These studies collectively
demonstrate the utility of radiomics analysis in predicting
treatment response, distinguishing immune microenvironment
characteristics, and identifying patients at risk of adverse
outcomes during immunotherapy for lung cancer.

Metastases prediction

Lung cancer brain metastases account for the vast majority of
adult brain metastases and are generally considered to be one of the
factors with poor prognosis. Meissner et al. developed radiomics
classifers allows for a non-invasive assessment of the intracranial
PD-L1 expression in patients with brain metastases (BM) secondary
to NSCLC with AUC of 0.84 (Meissner et al., 2023). Ahn et al. found
that radiomic features of contrast-enhanced T1-weighted images
(T1WIs) of BMs predict EGFR mutation status in primary lung
cancer cases with the highest AUC of 0.8909 (Ahn et al., 2020). Chu
et al. developed a CT radiomics BM model of predicted for BM risk
stratification in NSCLC patients and the AUC was 0.84 (95%
confidence interval: 0.80–0.89) (Chu et al., 2023). Chen et al.
built a model of survival duration using both clinical and
radiomic feature of MR imaging of BM from NSCLC and the
radiomic scores enabled the separation of each mutation-positive
group into two subgroups with significantly different survival
durations (Chen et al., 2021). Chen’s study demonstrated that
MR imaging based radiomic analysis of BM in patients with
primary lung cancer may be used to classify EGFR, ALK, and
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KRASmutation status and the AUC values based on cross validation
was 0.912, 0.915, and 0.985, respectively (Chen et al., 2020b). Fan’s
foundings suggested that multiregional radiomics of BM for
predicting EGFR mutations and response to EGFR-TKI and
AUC were 0.889 and 0.808 in external validation cohort
respectively (Fan et al., 2023a). The research of Fan showed
preoperative MRI-based radiomics could assess T790M resistance
mutation after EGFR-TKI treatment in NSCLC patients with BM
with AUCs of 0.860 in the external validation sets (Fan et al., 2023b).
The research of Li and Niu also showed similar results (Li et al., 2022;
Niu et al., 2023). Hou’s study indicated that MRI radiomics can be
used to detect the EGFR mutation of hepatic metastasis of NSCLC
patients, and AUCs was 0.908 in the training set and 0.884 in the
training set (Hou et al., 2023). Tang et al. used radiomic features
extracted from the contrast-enhanced chest CT to built a model and
evaluated metastatic NSCLC patients’ prognosis in osimertinib
treatment and the C-index 0.755 (Tang et al., 2021). Rahul et al.
also found CT texture analysis could be used to assess the patients of
metastatic NSCLC likely to benefit from nivolumab (Ladwa et al.,
2020). Zhao et al. constructed the model which combined with nine
selected radiomic features, could predict intracranial progression in
ALK-positive NSCLC patients with BM undergoing ensartinib
treatment. The Kaplan-Meier analysis showed that the
progression-free survival (PFS) difference between the high- and
low-risk groups distinguished by the Rad-score was significant (p =
0.017) (Zhao et al., 2021b).

Survival analysis

Survival analysis investigations encompass various metrics,
including overall survival (OS), progression-free survival (PFS),
local relapse-free survival (LRFS), distal metastasis-free survival
(DMFS), disease-free survival (DFS), and disease-specific survival
(DSS). Kang et al. (Carvalho et al., 2013) discovered that the
highest standard uptake value (SUV max) and OC-CSH, which
signifies tumor heterogeneity, stand as pivotal prognostic factors
for PFS, while OC-CSH is a significant prognostic indicator for
LRFS and DMFS. Carvalho et al.’s research indicated a meaningful
connection between the relative volume of the tumor containing
80% SUV and OS. Furthermore, a larger relative volume of the
tumor, paired with a higher SUV, correlated with improved
prognosis. Carvalho et al. (Abbas et al., 2023) validated the
predictive capability of δ-radiomic features (including volume,
texture features, and intensity-volume histogram [IVH]),
demonstrating their correlation with OS. Van Timmeren et al.’s
investigation highlighted the significance of a radiomic model
based on preprocessed CT and recalibrated cone-beam CT
images (concordance index = 0.69, p = 4.0 × 10−10) (Van
Timmeren et al., 2016) and a combined model featuring
preprocessed features and δ radiomic features (concordance
index = 0.675, p = 1.3 × 10−5) in Fave et al.’s study, both
proving influential in predicting OS (Fave et al., 2015). Coraller
TP et al. constructed an image omics model with 635 features, 35 of
which predicted metastasis and 12 of which predicted survival. The
predictive capacity of imaging features surpassed that of traditional
tumor volume (Peng et al., 2022). Grove et al. (Grove et al., 2015)
identified heterogeneity indicators like burr and entropy as robust

prognostic determinants for OS among early lung cancer patients.
Aerts et al. introduced a series of features, encompassing size,
shape, texture, and wavelets, capable of predicting lung cancer
patient prognosis. Additional research unveiled a link between CT
radiomics markers and DFS (Huang et al., 2016). Parmar et al.
(Parmar et al., 2015) discerned that tumor size, intensity, shape,
texture, and Baumann sign were associated with prognosis, stage,
and histological type of lung cancer patients. Cherezov et al.
(Cherezov et al., 2019) harnessed texture features to uncover
the tumor microenvironment, revealing that the degree of
tumor heterogeneity could potentially discern malignancy and
aggressiveness, distinguishing long-term and short-term survival
rates among lung cancer patients. Tang et al. found radiomics
clinical probability-weighted model could predict prognosis for
non-small cell lung cancer (NSCLC) with the AUC of 0.949 (Tang
et al., 2023). The research of Francesca Botta showed that a
radiomics model was able to separate high-risk and low-risk
patients for OS of NSCLC and the CTs reconstructed with
Iterative Reconstructions (IR) algorithm showed the best model
performance (Botta et al., 2020). Hou et al. construct a deep
learning model combining radiomic of contrast-enhanced
computed tomography and clinical features to predict the
overall survival of patients with NSCLC and AUC values of
0.76, 0.74, and 0.73, respectively, 8, 12, and 24 months after
diagnosis (Hou et al., 2022). Lan et al. developed and validated
a radiomics prognostic scoring system (RPSS) for prediction of
progression-free survival (PFS) in patients with stage IV non-small
cell lung cancer (NSCLC) treated with platinum-based
chemotherapy and showed significant prognostic performance
(He et al., 2021). Meanwhile, Win et al. (Win et al., 2013)
evaluated tumor heterogeneity and permeability in PET/CT
images, concluding that CT-derived texture heterogeneity was
solely connected to survival within the radical treatment group,
while the palliative care group’s survival correlated with CT-
derived texture heterogeneity, tumor stage, and permeability. In
summary, a correlation exists between certain radiomics features
and survival indicators. Recognized texture features mirror tumor
heterogeneity, a quality linked with tumor aggressiveness and an
unfavorable prognosis for lung cancer.

Discussion

Recent research indicates that radiomics holds substantial
potential for the differentiation of colorectal cancer and the
assessment of its prognosis. However, there remain certain
limitations prior to its widespread clinical application. Firstly,
standardizing image data within radiology departments becomes
challenging due to variations in scanning instruments across
manufacturers and diverse image acquisition protocols adopted
by different medical facilities. Secondly, radiomics studies
primarily source data from single centers with limited patient
enrollment. Consequently, addressing how to facilitate
collaborative multi-center investigations or conducting cross-
center validation of single-center data models poses a significant
challenge. Thirdly, the delineation of radiomics’ ROIs is often
performed manually, heavily reliant on the radiologist’s expertise.
Manual outlining consumes time and effort, resulting in diminished
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reproducibility. Fourthly, radiomics research predominantly
consists of retrospective studies, lacking prospective
investigations. Lastly, limitations of case enrollment. The main
selection of enrolled non-small cell lung cancer cases is solid
lesions with clear boundaries. Therefore, lesions with fewer solid
components or pure ground glass density, lesions with cavities, and
unclear boundaries with mediastinum and pleura, or lesions with
concomitant consolidation and atelectasis, and lesions covered by a
large amount of pleural fluid, cannot extract effective image
information. Therefore, higher precision image segmentation
algorithms are needed.

In recent times, considerable endeavors have been directed
towards achieving standardized radiomics imaging scans. Marta
Ligero’s investigation demonstrated that post-acquisition processing
of CT images and normalization techniques for radiomics enhance
classification accuracy (Ligero et al., 2021). Yajun Li’s work revealed
that a normalization method based on generative adversarial
networks (GAN) could mitigate radiomics feature variability
stemming from distinct CT imaging protocols, thereby
facilitating multicenter radiomics analysis (Ligero et al., 2021).
Collaborations between the National Institutes of Health (NIH)
and the National Cancer Institute (NCI), alongside various national
healthcare institutions, have led to the establishment of standardized
clinical imaging databases for employment in imaging omics
research.

To address the limitations stemming from the limited patient
count in single-center radiographic studies and challenges in
model verification, the trend toward multi-center radiographic
studies has gained traction. Fan developed a CT radiomics feature
model using data from multiple centers, exhibiting enhanced
performance in distinguishing adenocarcinoma from squamous
cell carcinoma subtypes in NSCLC (Song et al., 2023). Liu
established machine learning models based on CT images
from diverse centers, proving their utility in assessing EGFR
status in non-small cell lung cancer patients, with the RF model
surpassing LR, DT, and SVM models (Liu et al., 2022; Ma et al.,
2023). Janna’s work with FDG-PET/CT radiomics from multiple
centers showcased its capacity to evaluate early treatment
response in NSCLC patients (Schoenmaekers et al., 2019).
Mubarik’s research demonstrated that PET-based radiomics
from various centers could predict prognosis for NSCLC
patients undergoing radiotherapy or chemo-radiotherapy (van
Timmeren et al., 2019). The development of an optimized 18F-
FDG PET/CT radiomics model, predicting EGFR mutation status
and prognosis in lung adenocarcinoma, was realized through a
multicenter study (Arshad et al., 2019).

More recently, the integration of machine learning, including
deep learning, has progressively found its way into radiomics
research. In comparison to conventional radiomics, this
approach eliminates the need for image segmentation and
interim feature extraction (Chartrand et al., 2017), thereby
diminishing the errors linked to manual image segmentation
and conserving medical resources. However, its adoption in the

current literature remains limited, which might be due to its large
training dataset requirement and suboptimal model
interpretability.

Conclusion

Radiomics holds substantial promise for the clinical realm of
lung cancer. It proves valuable in diagnosing and distinguishing
colorectal cancer, gauging disease stage, anticipating treatment
responses, and enhancing prognostic insights. Although challenges
and limitations persist in the extensive application of radiomics in
clinical settings, as image standardization is established and
machine learning techniques are further explored, radiomics is
poised for widespread adoption in the near future.
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