24 research outputs found

    Terahertz Fibres and Functional FibreI-Based Devices

    Get PDF

    Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding

    Get PDF
    Research on terahertz waveguides is experiencing a tremendous growth due to their importance for compact and robust THz systems. However, designing compact, broadband, mechanically stable and environmentally shielded THz waveguides is still a challenge due to high losses of both metals and dielectrics in this frequency range. Here we report on a novel twist on the classical tube waveguide where we deliberately introduce a thick and highly lossy cladding layer. By this we attenuate the field in the cladding and thus prevent interference with the core field. This mechanism breaks the well-known ARROW guiding mechanism, and as a result, extremely broad bandwidth and low dispersion can be achieved with a very simple design. Since the main part of the field propagates inside the air-core, the propagation loss is still kept at a very low level. Simulations, analytical modelling and experiments verify our findings. The proposed THz waveguide is robust, insensitive to external perturbation and easy to handle, and thus the design represents a significant advance of the field of THz dielectric waveguides suitable for the 0.3–1 THz band which in the future will be important for ultrafast wireless communication systems

    Characterization of high-speed balanced photodetectors

    Get PDF
    We report the characterization of a balanced ultrafast photodetector. For this purpose, we use a recently developed time-domain laser-based vector network analyzer (VNA) to determine the common-mode rejection ratio (CMRR) of the device under test. This includes the frequency-domain response above the single-mode frequency of the coaxial connector. Although the balanced photodetector has a nominal bandwidth of 43 GHz, it generates voltage pulses with frequency components up to 180 GHz. We obtain a CMRR of better than 30 dB up to 70 GHz and better than 20 dB up to 110 GHz. The laser-based measurements are compared with the measurements using a digital sampling oscilloscope and with the frequency-domain measurements using a conventional VNA. We obtain good agreement between the three techniques with the laser-based method providing the largest measurement bandwidth, although it also constitutes the most complicated characterization setup

    Turing patterns in a fiber laser with a nested microresonator: robust and controllable microcomb generation

    Get PDF
    Microcombs based on Turing patterns have been extensively studied in configurations that can be modelled by the Lugiato-Lefever equation. Typically, such schemes are implemented experimentally by resonant coupling of a continuous wave laser to a Kerr microcavity in order to generate highly coherent and robust waves. Here, we study the formation of such patterns in a system composed of a microresonator nested in an amplifying laser cavity, a scheme recently used to demonstrate laser cavity solitons with high optical efficiency and easy repetition rate control. Utilizing this concept, we study different regimes of Turing patterns, unveiling their formation dynamics and demonstrating their controllability and robustness. By conducting a comprehensive modulational instability study with a mean-field model of the system, we explain the pattern formation in terms of its evolution from background noise, paving the way towards complete self-starting operation. Our theoretical and experimental paper provides a clear pathway for repetition rate control of these waves over both fine (Megahertz) and large (Gigahertz) scales, featuring a fractional frequency nonuniformity better than 7 × 10−14 with a 100-ms time gate and without the need for active stabilization

    Laser cavity-soliton microcombs

    Get PDF
    Microcavity-based frequency combs, or ‘microcombs’1,2, have enabled many fundamental breakthroughs3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 through the discovery of temporal cavity-solitons. These self-localized waves, described by the Lugiato–Lefever equation22, are sustained by a background of radiation usually containing 95% of the total power23. Simple methods for their efficient generation and control are currently being investigated to finally establish microcombs as out-of-the-lab tools24. Here, we demonstrate microcomb laser cavity-solitons. Laser cavity-solitons are intrinsically background-free and have underpinned key breakthroughs in semiconductor lasers22,25,26,27,28. By merging their properties with the physics of multimode systems29, we provide a new paradigm for soliton generation and control in microcavities. We demonstrate 50-nm-wide bright soliton combs induced at average powers more than one order of magnitude lower than the Lugiato–Lefever soliton power threshold22, measuring a mode efficiency of 75% versus the theoretical limit of 5% for bright Lugiato–Lefever solitons23. Finally, we can tune the repetition rate by well over a megahertz without any active feedback

    Type-II micro-comb generation in a filter-driven four wave mixing laser [Invited]

    Get PDF
    We experimentally demonstrate the generation of highly coherent Type-II micro-combs based on a microresonator nested in a fiber cavity loop, known as the filter-driven four wave mixing (FD-FWM) laser scheme. In this system, the frequency spacing of the comb can be adjusted to integer multiples of the free-spectral range (FSR) of the nested micro-resonator by properly tuning the fiber cavity length. Sub-comb lines with single FSR spacing around the primary comb lines can be generated. Such a spectral emission is known as a “Type-II comb.” Our system achieves a fully coherent output. This behavior is verified by numerical simulations. This study represents an important step forward in controlling and manipulating the dynamics of an FD-FWM laser

    Thermo-optical pulsing in a microresonator filtered fiber-laser: a route towards all-optical control and synchronization

    Get PDF
    We report on 'slow' pulsing dynamics in a silica resonator-based laser system: by nesting a high-Q rod-resonator inside an amplifying fiber cavity, we demonstrate that trains of microsecond pulses can be generated with repetition rates in the hundreds of kilohertz. We show that such pulses are produced with a period equivalent to several hundreds of laser cavity roundtrips via the interaction between the gain dynamics in the fiber cavity and the thermo-optical effects in the high-Q resonator. Experiments reveal that the pulsing properties can be controlled by adjusting the amplifying fiber cavity parameters. Our results, confirmed by numerical simulations, provide useful insights on the dynamical onset of complex self-organization phenomena in resonator-based laser systems where thermo-optical effects play an active role. In addition, we show how the thermal state of the resonator can be probed and even modified by an external, counter-propagating optical field, thus hinting towards novel approaches for all-optical control and sensing applications

    The behaviour of the bank lending channel when interest rates approach the zero lower bound: Evidence from quantile regressions

    No full text
    This paper examines the dynamic behaviour of the bank lending channel at the mean and at various quantiles for a sample of European banks, by making use of the quantiles regression methodology, spanning the period 2000–2012. In the first case, the bank lending channel exists. In contrast, when policy interest rates are estimated at lower quantiles as the rates approach the Zero Lower Bound, the monetary policy's capacity to influence banking loans seems to lose its momentum and is found to be completely ineffective below a critical policy interest rate. The results remain robust for different bank characteristics such as capitalisation, asset size, and liquidity, as well as for alternative scenarios concerning the definition of monetary decisions and the construction of lending activities. The empirical findings also survived other robustness checks, such as a different methodological approach, the role of securitisation and the role of non-conventional monetary policy measures. The empirical findings are expected to be significant in the context of the recent global financial crisis where central banks had to push down their policy interest rates close to zero. In such a distressed financial environment, changes in bank lending terms should form an explicit component of macroeconomic models that describe monetary policy rules used for policy advice
    corecore