264 research outputs found

    A COMPARISON BETWEEN PLOT AND POINT SAMPLING USING A COMPUTER BASED TREE POPULATION OF Pinus caribaea SRI LANKA

    Get PDF
    Research was conducted in the University Forest at Yagirala Forest Reserve, KalutaraDistrict, Sri Lanka, to compare the efficiency of point and plot sampling in Pinus caribaeaplantation using computer simulated sampling on a population of trees using data collectedin the field. In all, 3294 trees on 5.4 hectares constitute the population. The data base hasbeen filed with tree number, dbh, X and Y co-ordinates. Edge effect bias was minimizedusing the reflection method.Random sampling was used in all cases for sample sizes n = 10, 20, 30, 60 and 100. Inorder to make meaningful comparisons, the concept of equivalent plot was used whichaimed at obtaining equal tallies per sampling unit for point and plot sampling. Basal areafactors applied were 2, 4, 9 and 16. Efficiency for given point - plot equivalents werebased on standard error % and cost values (where cost was based on time). In 19 of the 20point-plot combinations studied, point sampling was found to be the more efficient. Themost suitable BAF is BAF2 and it is recommended that point sampling be applied inplantation forest inventories in Sri Lanka where trained staff are available.

    Women, know your limits: Cultural sexism in academia

    Get PDF
    Despite the considerable advances of the feminist movement across Western societies, in Universities women are less likely to be promoted, or paid as much as their male colleagues, or even get jobs in the first place. One way in which we can start to reflect on why this might be the case is through hearing the experiences of women academics themselves. Using feminist methodology, this article attempts to unpack and explore just some examples of ‘cultural sexism’ which characterise the working lives of many women in British academia.This article uses qualitative methods to describe and make sense of just some of those experiences. In so doing, the argument is also made that the activity of academia is profoundly gendered and this explicit acknowledgement may contribute to our understanding of the under-representation of women in senior positions

    Searching for compact objects in the single-lined spectroscopic binaries of the young Galactic cluster NGC 6231

    Full text link
    Recent evolutionary computations predict that a few percent of massive OB stars in binary systems should have a dormant BH companion. Despite several reported X-ray quiet OB+BH systems over the last couple of years, finding them with certainty remains challenging. These have great importance as they can be gravitational wave (GW) source progenitors, and are landmark systems in constraining supernova kick physics. This work aims to characterise the hidden companions to the single-lined spectroscopic binaries (SB1s) in the B star population of the young open Galactic cluster NGC 6231 to find candidate systems for harbouring compact object companions. With the orbital solutions for each SB1 previously constrained, we applied Fourier spectral disentangling to multi-epoch optical VLT/FLAMES spectra of each target to extract a potential signature of a faint companion, and to identify newly disentangled double-lined spectroscopic binaries (SB2s). For targets where the disentangling does not reveal any signature of a stellar companion, we performed atmospheric and evolutionary modelling on the primary to obtain constraints on the unseen companion. Seven newly classified SB2 systems with mass ratios down to near 0.1 were identified. From the remaining targets, for which no faint companion could be extracted from the spectra, four are found to have companion masses in the predicted mass ranges of neutron stars (NSes) and BHes. Two of these have companion masses between 1 and 3.5 MM_{\odot}, making them potential hosts of NSes (or lower mass main sequence stars). The other two are between 2.5 to 8 MM_{\odot} and 1.6 and 26 MM_{\odot}, respectively, and so are identified as candidates for harbouring BH companions. However, unambiguous identification of these systems as X-ray quiet compact object harbouring binaries requires follow up observations.Comment: Submitted to A&

    Tango of celestial dancers: A sample of detached eclipsing binary systems containing g-mode pulsating components. A case study of KIC9850387

    Get PDF
    Context. Eclipsing binary systems with components that pulsate in gravity modes (g modes) allow for simultaneous and independent constraints of the chemical mixing profiles of stars. The high precision of the dynamical masses and radii as well as the imposition of identical initial chemical compositions and equivalent ages provide strong constraints during the modelling of g-mode period-spacing patterns. Aims. We aim to assemble a sample of g-mode pulsators in detached eclipsing binaries with the purpose of finding good candidates for future evolutionary and asteroseismic modelling. In addition, we present a case study of the eclipsing binary KIC9850387, identified as our most promising candidate, and detail the results of the observational spectroscopic, photometric, and asteroseismic analysis of the system. Methods. We selected all of the detached eclipsing binaries in the Kepler eclipsing binary catalogue with Kepler Input Catalogue (KIC) temperatures between 6000 K and 10 000 K, and performed a visual inspection to determine the presence and density of g modes, and the presence of g-mode period-spacing patterns in their frequency spectra. We then characterised our sample based on their g-mode pulsational parameters and binary and atmospheric parameters. A spectroscopic follow-up of our most promising candidate was then performed, and the orbital elements of the system were extracted. We then performed spectral disentangling followed by atmospheric modelling and abundance analysis for the primary star. We utilised an iterative approach to simultaneously optimise the pulsational and eclipse models, and subsequently performed an analysis of the pressure- (p-) and g-mode pulsational frequencies. Results. We compiled a sample of 93 Kepler eclipsing binary stars with g-mode pulsating components and identified clear g-mode period-spacing patterns in the frequency spectra of seven of these systems. We also identified 11 systems that contained hybrid p- and g-mode pulsators. We found that the g-mode pulsational parameters and the binary and atmospheric parameters of our sample are weakly correlated at best, as expected for detached main-sequence binaries. We find that the eclipsing binary KIC9850387 is a double-lined spectroscopic binary in a near-circular orbit with a hybrid p- and g-mode pulsating primary with M_p = 1.66_(−0.01)^(+0.01) M⊙ and R_p = 2.154_(−0.004)^(+0.002) R⊙, and a solar-like secondary with M_s = 1.062_(−0.005)^(+0.003) M⊙ and R_s = 1.081_(−0.002)^(+0.003) R⊙. We find ℓ = 1 and ℓ = 2 period-spacing patterns in the frequency spectrum of KIC9850387 spanning more than ten radial orders each, which will allow for stringent constraints of stellar structure during future asteroseismic modelling

    A calibration point for stellar evolution from massive star asteroseismology

    Full text link
    Massive stars are progenitors of supernovae, neutron stars and black holes. During the hydrogen-core burning phase their convective cores are the prime drivers of their evolution, but inferences of core masses are subject to unconstrained boundary mixing processes. Moreover, uncalibrated transport mechanisms can lead to strong envelope mixing and differential radial rotation. Ascertaining the efficiency of the transport mechanisms is challenging because of a lack of observational constraints. Here we deduce the convective core mass and robustly demonstrate non-rigid radial rotation in a supernova progenitor, the 12.01.5+1.512.0^{+1.5}_{-1.5} solar-mass hydrogen-burning star HD 192575, using asteroseismology, TESS photometry, high-resolution spectroscopy, and Gaia astrometry. We infer a convective core mass (Mcc=2.90.8+0.5M_{\rm cc} = 2.9^{+0.5}_{-0.8} solar masses), and find the core to be rotating between 1.4 and 6.3 times faster than the stellar envelope depending on the location of the rotational shear layer. Our results deliver a robust inferred core mass of a massive star using asteroseismology from space-based photometry. HD 192575 is a unique anchor point for studying interior rotation and mixing processes, and thus also angular momentum transport mechanisms inside massive stars.Comment: 41 pages, 5 figures, 1 table. Version comment: updated erroneous affiliatio

    The young massive SMC cluster NGC 330 seen by MUSE III. Stellar parameters and rotational velocities

    Full text link
    The origin of initial rotation rates of stars, and how a star's surface rotational velocity changes during the evolution, either by internal angular momentum transport or due to interactions with a binary companion, remain open questions in stellar astrophysics. Here, we aim to derive the physical parameters and study the distribution of (projected) rotational velocities of B-type stars in the 35 Myr-old, massive cluster NGC 330 in the Small Magellanic Cloud. NGC 330 is in an age range where the number of post-interaction binaries is predicted to be high near the cluster turnoff (TO). We develop a simultaneous photometric and spectroscopic grid-fitting method adjusting atmosphere models on multi-band Hubble Space Telescope photometry and Multi Unit Spectroscopic Explorer spectroscopy. This allows us to homogeneously constrain the physical parameters of over 250 B and Be stars, brighter than mF814W = 18.8 mag. The rotational velocities of Be stars in NGC 330 are significantly higher than the ones of B stars. The rotational velocities vary as a function of the star's position in the color-magnitude diagram, qualitatively following predictions of binary population synthesis. A comparison to younger clusters shows that stars in NGC 330 rotate more rapidly on average. The rotational velocities of the 35 Myr old population in NGC 330 quantitatively agree with predictions for a stellar population that underwent significant binary interactions: the bulk of the B stars could be single stars or primaries in pre-interaction binaries. The rapidly spinning Be stars could be mass and angular momentum gainers in previous interactions, while those Be stars close to the TO may be spun-up single stars. The slowly rotating, apparently single stars above the TO could be merger products. The different vsini-characteristics of NGC 330 compared to younger populations can be understood in this framework.Comment: 18 pages (incl. appendix), 15 figures, 3 tables, accepted for publication in A&

    Optical and near-infrared observations of the Fried Egg Nebula

    Get PDF
    Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, and in particular, the connection between the observed asymmetries due to the mass lost in a fast wind or during a previous, prodigious mass-losing phase. In this context, yellow hypergiants offer a good opportunity to study mass-loss events. Methods. We analysed a large set of optical and near-infrared data in spectroscopic and photometric, spectropolarimetric, and interferometric (GRAVITY/VLTI) modes, towards the yellow hypergiant IRAS 17163−3907. We used X-shooter optical observations to determine the spectral type of this yellow hypergiant and we present the first model-independent, reconstructed images of IRAS 17163−3907 at these wavelengths tracing milli-arcsecond scales. Lastly, we applied a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published diffraction-limited VISIR images at 8.59 μm, 11.85 μm, and 12.81 μm simultaneously, adopting a revised distance determination using Gaia Data Release 2 measurements. Results. We constrain the spectral type of IRAS 17163−3907 to be slightly earlier than A6Ia (Teff ∼ 8500 K). The interferometric observables around the 2 μm window towards IRAS 17163−3907 show that the Brγ emission appears to be more extended and asymmetric than the Na I and the continuum emission. Interestingly, the spectrum of IRAS 17163−3907 around 2 μm shows Mg II emission that is not previously seen in other objects of its class. In addition, Brγ shows variability in a time interval of four months that is not seen towards Na I. Lastly, in addition to the two known shells surrounding IRAS 17163−3907, we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The 2 μm continuum originates directly from the star and not from hot dust surrounding the stellar object. The observed spectroscopic variability of Brγ could be a result of variability in the mass-loss rate. The interpretation of the presence of Na I emission at closer distances to the star compared to Brγ has been a challenge in various studies. To address this, we examine several scenarios. We argue that the presence of a pseudo-photosphere, which was traditionally considered to be the prominent explanation, is not needed and that it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform theories of mass-loss mechanisms, which is a topic still under debate both in theory and observations. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms

    Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans

    Get PDF
    Rabies kills many people throughout the developing world every year. The murine monoclonal antibody (mAb) 62-71-3 was recently identified for its potential application in rabies postexposure prophylaxis (PEP). The purpose here was to establish a plant-based production system for a chimeric mouse-human version of mAb 62-71-3, to characterize the recombinant antibody and investigate at a molecular level its interaction with rabies virus glycoprotein. Chimeric 62-71-3 was successfully expressed in Nicotiana benthamiana. Glycosylation was analyzed by mass spectroscopy; functionality was confirmed by antigen ELISA, as well as rabies and pseudotype virus neutralization. Epitope characterization was performed using pseudotype virus expressing mutagenized rabies glycoproteins. Purified mAb demonstrated potent viral neutralization at 500 IU/mg. A critical role for antigenic site I of the glycoprotein, as well as for two specific amino acid residues (K226 and G229) within site I, was identified with regard to mAb 62-71-3 neutralization. Pseudotype viruses expressing glycoprotein from lyssaviruses known not to be neutralized by this antibody were the controls. The results provide the molecular rationale for developing 62-71-3 mAb for rabies PEP; they also establish the basis for developing an inexpensive plant-based antibody product to benefit low-income families in developing countries.—Both, L., van Dolleweerd, C., Wright, E., Banyard, A. C., Bulmer-Thomas, B., Selden, D., Altmann, F., Fooks, A. R., Ma, J. K.-C. Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans
    corecore