38 research outputs found

    Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland:A Comparative Study

    Get PDF
    This is the accepted manuscript. The final version is available from Ingenta Connect at http://www.ingentaconnect.com/content/igsoc/agl/2014/00000055/00000066/art00001.Supraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal ice\ud sheet flow, and are thus agents by which warming is transmitted to the Antarctic\ud and Greenland ice sheets. To characterize supraglacial lake variability we perform a\ud comparative analysis of lake geometry and depth in two distinct regions, one on the\ud pre-collapse (2002) Larsen B Ice Shelf, and the other in the ablation zone of\ud Paakitsoq, a land-terminating region of the Greenland Ice Sheet. Compared to\ud Paakitsoq, lakes on the Larsen B Ice Shelf cover a greater proportion of surface area\ud (5.3% vs. 1%), but are shallower and more uniform in area. Other aspects of lake\ud geometry, such as eccentricity, degree of convexity (solidity) and orientation, are\ud relatively similar between the two regions. We attribute the notable difference in\ud lake density and depth between ice-shelf and grounded ice to the fact that ice shelves\ud have flatter surfaces and less distinct drainage basins. Ice shelves also possess more\ud stimuli to small-scale, localized surface elevation variability due to the various\ud structural features that yield small variations in thickness and which float at\ud different levels by Archimedes? principle.We acknowledge the support of the U.S. National Science Foundation under grant ANT-0944248

    Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    Get PDF
    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (~2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics

    A new model for supraglacial hydrology evolution and drainage for the Greenland ice sheet (SHED v1.0)

    Get PDF
    The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream/river networks and large supraglacial lakes (SGLs). Streams/rivers can route water into crevasses, or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically-based, supraglacial hydrology model for the GrIS that is able to simulate a) surface meltwater routing and SGL filling, b) rapid meltwater drainage to the ice-sheet bed via the hydrofracture of surface crevasses both in, and outside of, SGLs, c) slow SGL drainage via overflow in supraglacial meltwater channels and, by offline coupling with a second model, d) the freezing and unfreezing of SGLs from autumn to spring. We call the model Supraglacial Hydrology Evolution and Drainage (or SHED). We apply the model to three study regions in South West Greenland between 2015 and 2019 inclusive and evaluate its performance with respect to observed supraglacial lake extents, and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations, and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published and seasonal and inter-annual variability in proglacial discharge agrees well with that observed, though the observations lag the model by a few days since they include transit time through the subglacial system and the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture, and some lakes draining only partially and then refreezing. This suggests that in order to simulate the evolution of Greenland&rsquo;s surface hydrological system with fidelity, then a model that includes all of these processes needs to be used. In future work we will couple our model to a subglacial model and an ice flow model, and thus use our estimates of where, when and how much meltwater gets to the bed to understand the consequences for ice flow.</p

    Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland

    Get PDF
    Modelling the hydrology of the Greenland ice sheet, including the filling and drainage of supraglacial lakes, requires melt inputs generated at high spatial and temporal resolution. Here we apply a high spatial (100 m) and temporal (1 hour) mass-balance model to a 450 km2 subset of the Paakitsoq region, West Greenland. The model is calibrated by adjusting the values for parameters of fresh snow density, threshold temperature for solid/liquid precipitation and elevation-dependent precipitation gradient to minimize the error between modelled output and surface height and albedo measurements from three Greenland Climate Network stations for the mass-balance years 2000/01 and 2004/05. Bestfit parameter values are consistent between the two years at 400 kg m–3, 2° C and +14% (100 m)–1, respectively. Model performance is evaluated, first, by comparing modelled snow and ice distribution with that derived from Landsat-7 ETM+ satellite imagery using normalized-difference snow index classification and supervised image thresholding; and second, by comparing modelled albedo with that retrieved from the MODIS sensor MOD10A1 product. Calculation of mass-balance components indicates that 6% of surface meltwater and rainwater refreezes in the snowpack and does not become runoff, such that refreezing accounts for 31% of the net accumulation

    Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland:A Comparative Study

    Get PDF
    This is the accepted manuscript. The final version is available from Ingenta Connect at http://www.ingentaconnect.com/content/igsoc/agl/2014/00000055/00000066/art00001.Supraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal ice\ud sheet flow, and are thus agents by which warming is transmitted to the Antarctic\ud and Greenland ice sheets. To characterize supraglacial lake variability we perform a\ud comparative analysis of lake geometry and depth in two distinct regions, one on the\ud pre-collapse (2002) Larsen B Ice Shelf, and the other in the ablation zone of\ud Paakitsoq, a land-terminating region of the Greenland Ice Sheet. Compared to\ud Paakitsoq, lakes on the Larsen B Ice Shelf cover a greater proportion of surface area\ud (5.3% vs. 1%), but are shallower and more uniform in area. Other aspects of lake\ud geometry, such as eccentricity, degree of convexity (solidity) and orientation, are\ud relatively similar between the two regions. We attribute the notable difference in\ud lake density and depth between ice-shelf and grounded ice to the fact that ice shelves\ud have flatter surfaces and less distinct drainage basins. Ice shelves also possess more\ud stimuli to small-scale, localized surface elevation variability due to the various\ud structural features that yield small variations in thickness and which float at\ud different levels by Archimedes? principle.We acknowledge the support of the U.S. National Science Foundation under grant ANT-0944248
    corecore