146 research outputs found

    Host responses influence on the induction of lambda prophage

    Get PDF
    Inactivation of bacteriophage lambda CI repressor leads almost exclusively to lytic development. Prophage induction can be initiated either by DNA damage or by heat treatment of a temperature-sensitive repressor. These two treatments also cause a concurrent activation of either the host SOS or heat-shock stress responses respectively. We studied the effects of these two methods of induction on the lytic pathway by monitoring the activation of different lambda promoters, and found that the lambda genetic network co-ordinates information from the host stress response networks. Our results show that the function of the CII transcriptional activator, which facilitates the lysogenic developmental pathway, is not observed following either method of induction. Mutations in the cro gene restore the CII function irrespective of the induction method. Deletion of the heat-shock protease gene ftsH can also restore CII function following heat induction but not following SOS induction. Our findings highlight the importance of the elimination of CII function during induction as a way to ensure an efficient lytic outcome. We also show that, despite the common inhibitory effect on CII function, there are significant differences in the heat- and SOS-induced pathways leading to the lytic cascade

    Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis

    Get PDF
    Interactions between plants and fungal pathogens require a complex interplay at the plant–fungus interface. Extracellular effector proteins are thought to play a crucial role in establishing a successful infection. To identify pathogenesis-related proteins in Ustilago maydis we combined the isolation of secreted proteins using a signal sequence trap approach with bioinformatic analyses and the subsequent characterization of knock-out mutants. We identified 29 secreted proteins including hydrophobins and proteins with a repetitive structure similar to the repellent protein Rep1. Hum3, a protein containing both, a hydrophobin domain and a repetitive Rep1-like region, is shown to be processed during passage through the secretory pathway. While single knock-outs of hydrophobin or repellent-like genes did not affect pathogenicity, we found a strong effect of a double knock-out of hum3 and the repetitive rsp1. Yeast-like growth, mating, aerial hyphae formation and surface hydrophobicity were unaffected in this double mutant. However, pathogenic development in planta stops early after penetration leading to a complete loss of pathogenicity. This indicates that Hum3 and Rsp1 are pathogenicity proteins that share an essential function in early stages of the infection. Our results demonstrate that focusing on secreted proteins is a promising way to discover novel pathogenicity proteins that might be broadly applied to a variety of fungal pathogens

    Identification of O-mannosylated Virulence Factors in Ustilago maydis

    Get PDF
    The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis

    Allelic Exchange of Pheromones and Their Receptors Reprograms Sexual Identity in Cryptococcus neoformans

    Get PDF
    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining “sexes” known as mating types and is controlled by components of mating type (MAT) loci. MAT–encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and α) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (α). We discovered that these “αa” cells effectively adopt a new mating type (that of a cells); they sense and respond to α factor, they elicit a mating response from α cells, and they fuse with α cells. In addition, αa cells lose the α cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between α and αa strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT–encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen

    Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins

    Get PDF
    The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation. We here assessed changes in global gene expression as a consequence of the inactivation of the rep1 gene. Microarray analysis revealed that only 31 genes in the ∆rep1 SG200 strain had a fold change in expression of ≥2. Twenty-two of these genes were up-regulated and half of them encode small secreted proteins (SSPs) with unknown functions. Seven of the SSP genes and two other genes that are over-expressed in the ∆rep1 SG200 strain encode proteins that can be classified as secreted cysteine-rich proteins (SCRPs). Interestingly, most of the SCRPs are predicted to form amyloids. The SCRP gene um00792 showed the highest up-regulation in the ∆rep1 strain. Using GFP as a reporter, it was shown that this gene is over-expressed in the layer of hyphae at the medium-air interface. Taken together, it is concluded that inactivation of rep1 hardly affects the expression profile of U. maydis, despite the fact that the mutant strain has a strong reduced ability to form aerial hyphae

    Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell–cell and cell–substrate adherence of S. cerevisiae S288c

    Get PDF
    Cell–cell and cell–surface adherence represents initial steps in forming multicellular aggregates or in establishing cell–surface interactions. The commonly used Saccharomyces cerevisiae laboratory strain S288c carries a flo8 mutation, and is only able to express the flocculin-encoding genes FLO1 and FLO11, when FLO8 is restored. We show here that the two flocculin genes exhibit differences in regulation to execute distinct functions under various environmental conditions. In contrast to the laboratory strain Σ1278b, haploids of the S288c genetic background require FLO1 for cell–cell and cell–substrate adhesion, whereas FLO11 is required for pseudohyphae formation of diploids. In contrast to FLO11, FLO1 repression requires the Sin4p mediator tail component, but is independent of the repressor Sfl1p. FLO1 regulation also differs from FLO11, because it requires neither the KSS1 MAP kinase cascade nor the pathways which lead to the transcription factors Gcn4p or Msn1p. The protein kinase A pathway and the transcription factors Flo8p and Mss11p are the major regulators for FLO1 expression. Therefore, S. cerevisiae is prepared to simultaneously express two genes of its otherwise silenced FLO reservoir resulting in an appropriate cellular surface for different environments

    Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis

    Get PDF
    Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently

    Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells

    Get PDF
    The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Δpep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Δpep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Δpep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction
    corecore