19 research outputs found

    Caractérisations structurale et fonctionnelle des protéines associées aux nucléoïdes de Deinococcus radiodurans et Deinococcus deserti

    No full text
    The bacterium Deinococcus radiodurans is one of the most radiation resistant organisms on earth. This resistance results from multiple mechanisms, including an unusual nucleoid organization. The aim of my thesis was to better understand the organization and dynamics of the nucleoids of D. radiodurans and Deinococcus deserti, a bacterium isolated from the Sahara Desert that also exhibits a strong resistance to UV and ionizing radiation and to prolonged desiccation. Specifically, my studies focused on the nucleoid-associated proteins (or NAPs) of these bacteria - the HU proteins and DNA gyrase which are the most abundant - as well as a Deinococcus-specific NAP, DdrC. The objective was to elucidate the three-dimensional structure of these proteins, to characterize their interactions with DNA, and finally to study their effects on the conformation and compaction of plasmid DNA.Through biochemical studies and atomic force microscopy and electron microscopy analyses, we have highlighted significant differences in the mechanisms of compaction and DNA binding used by the different HU protein homologues from D. radiodurans (DrHU) and D. deserti (DdHU1, DdHU2 and DdHU3). In particular, we have demonstrated a dual role for DrHU in the organization and compaction of plasmid DNA, which can be either condensed or rigidified depending on the concentration of DNA-bound DrHU - a dual function that is not conserved in DdHU1, its closest homolog. We also succeeded in producing two forms of the DNA gyrase, an active form that can be used for functional studies, and a second, more stable, but less active form that is more suitable for structural studies. Finally, our structural studies of DdrC coupled with biochemical and molecular dynamics analyses revealed the three-dimensional structure of DdrC, its oligomerization state, and its mode of binding to DNA. These results suggest that DdrC may be a Deinococcus-specific NAP, playing a key role in nucleoid compaction after irradiation and perhaps more broadly in the DNA damage response of these bacteria. Together, these studies have provided a better understanding of the molecular mechanisms used by these radio-resistant bacteria to organize and structure their nucleoid and respond efficiently to genotoxic stresses such as irradiation.La bactérie Deinococcus radiodurans est l’un des organismes les plus radio-résistants sur terre. Cette résistance résulte d’un ensemble de mécanismes, dont une structuration particulière de son nucléoïde. Mes travaux de thèse avaient pour but de mieux appréhender l’organisation et la dynamique des nucléoïdes de D. radiodurans et de Deinococcus deserti, une bactérie isolée dans le désert du Sahara et présentant également une forte résistance aux rayonnements UV et ionisants et à une dessiccation prolongée. Plus précisément, mes études ont porté sur les protéines associées au nucléoïde (ou NAPs) de ces bactéries - les protéines HU et l'ADN gyrase qui sont les plus abondantes - ainsi qu’une NAP spécifique des Deinococcus, DdrC. L'objectif était d'élucider la structure tridimensionnelle de ces protéines, de caractériser leurs interactions avec l’ADN, et enfin d'étudier leurs effets sur la conformation et la compaction d’ADN plasmidique.Par des études biochimiques et des analyses par microscopie à force atomique et par microscopie électronique, nous avons mis en lumière des différences notables dans les mécanismes de compaction et de liaison à l'ADN entre les différents homologues de la protéine HU de D. radiodurans (DrHU) et de D. deserti (DdHU1, DdHU2 et DdHU3). En particulier, nous avons démontré un double rôle de DrHU dans l’organisation et la compaction de l’ADN plasmidique, qui peut être condensé ou rigidifié en fonction de la concentration de DrHU liée à l’ADN - une double fonction qui n’est pas conservée chez DdHU1, son plus proche homologue. Nous avons également réussi à produire deux formes de l’ADN gyrase, une forme active pouvant être utilisée pour des études fonctionnelles, et une deuxième plus stable, mais moins active, qui est plus adaptée pour des études structurales. Enfin, nos études structurales de DdrC couplées à des analyses biochimiques et de dynamique moléculaire ont révélé la structure tridimensionnelle de DdrC, son état d’oligomérisation et son mode de fixation à l’ADN. Ces résultats suggèrent que DdrC pourrait être une NAP spécifique des Deinococcus, jouant un rôle clé dans la compaction du nucléoïde après irradiation et peut-être plus largement dans la réponse de ces bactéries aux dommages de l’ADN. Ensemble, ces études ont permis de mieux comprendre les mécanismes moléculaires mis en œuvre par ces bactéries radio-résistantes pour organiser et structurer leur nucléoïde et répondre de façon efficace à des stress génotoxiques tels que l’irradiation

    Structural and functional characterization of nucleoid associated proteins of Deinococcus radiodurans and Deinococcus deserti

    No full text
    La bactérie Deinococcus radiodurans est l’un des organismes les plus radio-résistants sur terre. Cette résistance résulte d’un ensemble de mécanismes, dont une structuration particulière de son nucléoïde. Mes travaux de thèse avaient pour but de mieux appréhender l’organisation et la dynamique des nucléoïdes de D. radiodurans et de Deinococcus deserti, une bactérie isolée dans le désert du Sahara et présentant également une forte résistance aux rayonnements UV et ionisants et à une dessiccation prolongée. Plus précisément, mes études ont porté sur les protéines associées au nucléoïde (ou NAPs) de ces bactéries - les protéines HU et l'ADN gyrase qui sont les plus abondantes - ainsi qu’une NAP spécifique des Deinococcus, DdrC. L'objectif était d'élucider la structure tridimensionnelle de ces protéines, de caractériser leurs interactions avec l’ADN, et enfin d'étudier leurs effets sur la conformation et la compaction d’ADN plasmidique.Par des études biochimiques et des analyses par microscopie à force atomique et par microscopie électronique, nous avons mis en lumière des différences notables dans les mécanismes de compaction et de liaison à l'ADN entre les différents homologues de la protéine HU de D. radiodurans (DrHU) et de D. deserti (DdHU1, DdHU2 et DdHU3). En particulier, nous avons démontré un double rôle de DrHU dans l’organisation et la compaction de l’ADN plasmidique, qui peut être condensé ou rigidifié en fonction de la concentration de DrHU liée à l’ADN - une double fonction qui n’est pas conservée chez DdHU1, son plus proche homologue. Nous avons également réussi à produire deux formes de l’ADN gyrase, une forme active pouvant être utilisée pour des études fonctionnelles, et une deuxième plus stable, mais moins active, qui est plus adaptée pour des études structurales. Enfin, nos études structurales de DdrC couplées à des analyses biochimiques et de dynamique moléculaire ont révélé la structure tridimensionnelle de DdrC, son état d’oligomérisation et son mode de fixation à l’ADN. Ces résultats suggèrent que DdrC pourrait être une NAP spécifique des Deinococcus, jouant un rôle clé dans la compaction du nucléoïde après irradiation et peut-être plus largement dans la réponse de ces bactéries aux dommages de l’ADN. Ensemble, ces études ont permis de mieux comprendre les mécanismes moléculaires mis en œuvre par ces bactéries radio-résistantes pour organiser et structurer leur nucléoïde et répondre de façon efficace à des stress génotoxiques tels que l’irradiation.The bacterium Deinococcus radiodurans is one of the most radiation resistant organisms on earth. This resistance results from multiple mechanisms, including an unusual nucleoid organization. The aim of my thesis was to better understand the organization and dynamics of the nucleoids of D. radiodurans and Deinococcus deserti, a bacterium isolated from the Sahara Desert that also exhibits a strong resistance to UV and ionizing radiation and to prolonged desiccation. Specifically, my studies focused on the nucleoid-associated proteins (or NAPs) of these bacteria - the HU proteins and DNA gyrase which are the most abundant - as well as a Deinococcus-specific NAP, DdrC. The objective was to elucidate the three-dimensional structure of these proteins, to characterize their interactions with DNA, and finally to study their effects on the conformation and compaction of plasmid DNA.Through biochemical studies and atomic force microscopy and electron microscopy analyses, we have highlighted significant differences in the mechanisms of compaction and DNA binding used by the different HU protein homologues from D. radiodurans (DrHU) and D. deserti (DdHU1, DdHU2 and DdHU3). In particular, we have demonstrated a dual role for DrHU in the organization and compaction of plasmid DNA, which can be either condensed or rigidified depending on the concentration of DNA-bound DrHU - a dual function that is not conserved in DdHU1, its closest homolog. We also succeeded in producing two forms of the DNA gyrase, an active form that can be used for functional studies, and a second, more stable, but less active form that is more suitable for structural studies. Finally, our structural studies of DdrC coupled with biochemical and molecular dynamics analyses revealed the three-dimensional structure of DdrC, its oligomerization state, and its mode of binding to DNA. These results suggest that DdrC may be a Deinococcus-specific NAP, playing a key role in nucleoid compaction after irradiation and perhaps more broadly in the DNA damage response of these bacteria. Together, these studies have provided a better understanding of the molecular mechanisms used by these radio-resistant bacteria to organize and structure their nucleoid and respond efficiently to genotoxic stresses such as irradiation

    Caractérisations structurale et fonctionnelle des protéines associées aux nucléoïdes de Deinococcus radiodurans et Deinococcus deserti

    No full text
    The bacterium Deinococcus radiodurans is one of the most radiation resistant organisms on earth. This resistance results from multiple mechanisms, including an unusual nucleoid organization. The aim of my thesis was to better understand the organization and dynamics of the nucleoids of D. radiodurans and Deinococcus deserti, a bacterium isolated from the Sahara Desert that also exhibits a strong resistance to UV and ionizing radiation and to prolonged desiccation. Specifically, my studies focused on the nucleoid-associated proteins (or NAPs) of these bacteria - the HU proteins and DNA gyrase which are the most abundant - as well as a Deinococcus-specific NAP, DdrC. The objective was to elucidate the three-dimensional structure of these proteins, to characterize their interactions with DNA, and finally to study their effects on the conformation and compaction of plasmid DNA.Through biochemical studies and atomic force microscopy and electron microscopy analyses, we have highlighted significant differences in the mechanisms of compaction and DNA binding used by the different HU protein homologues from D. radiodurans (DrHU) and D. deserti (DdHU1, DdHU2 and DdHU3). In particular, we have demonstrated a dual role for DrHU in the organization and compaction of plasmid DNA, which can be either condensed or rigidified depending on the concentration of DNA-bound DrHU - a dual function that is not conserved in DdHU1, its closest homolog. We also succeeded in producing two forms of the DNA gyrase, an active form that can be used for functional studies, and a second, more stable, but less active form that is more suitable for structural studies. Finally, our structural studies of DdrC coupled with biochemical and molecular dynamics analyses revealed the three-dimensional structure of DdrC, its oligomerization state, and its mode of binding to DNA. These results suggest that DdrC may be a Deinococcus-specific NAP, playing a key role in nucleoid compaction after irradiation and perhaps more broadly in the DNA damage response of these bacteria. Together, these studies have provided a better understanding of the molecular mechanisms used by these radio-resistant bacteria to organize and structure their nucleoid and respond efficiently to genotoxic stresses such as irradiation.La bactérie Deinococcus radiodurans est l’un des organismes les plus radio-résistants sur terre. Cette résistance résulte d’un ensemble de mécanismes, dont une structuration particulière de son nucléoïde. Mes travaux de thèse avaient pour but de mieux appréhender l’organisation et la dynamique des nucléoïdes de D. radiodurans et de Deinococcus deserti, une bactérie isolée dans le désert du Sahara et présentant également une forte résistance aux rayonnements UV et ionisants et à une dessiccation prolongée. Plus précisément, mes études ont porté sur les protéines associées au nucléoïde (ou NAPs) de ces bactéries - les protéines HU et l'ADN gyrase qui sont les plus abondantes - ainsi qu’une NAP spécifique des Deinococcus, DdrC. L'objectif était d'élucider la structure tridimensionnelle de ces protéines, de caractériser leurs interactions avec l’ADN, et enfin d'étudier leurs effets sur la conformation et la compaction d’ADN plasmidique.Par des études biochimiques et des analyses par microscopie à force atomique et par microscopie électronique, nous avons mis en lumière des différences notables dans les mécanismes de compaction et de liaison à l'ADN entre les différents homologues de la protéine HU de D. radiodurans (DrHU) et de D. deserti (DdHU1, DdHU2 et DdHU3). En particulier, nous avons démontré un double rôle de DrHU dans l’organisation et la compaction de l’ADN plasmidique, qui peut être condensé ou rigidifié en fonction de la concentration de DrHU liée à l’ADN - une double fonction qui n’est pas conservée chez DdHU1, son plus proche homologue. Nous avons également réussi à produire deux formes de l’ADN gyrase, une forme active pouvant être utilisée pour des études fonctionnelles, et une deuxième plus stable, mais moins active, qui est plus adaptée pour des études structurales. Enfin, nos études structurales de DdrC couplées à des analyses biochimiques et de dynamique moléculaire ont révélé la structure tridimensionnelle de DdrC, son état d’oligomérisation et son mode de fixation à l’ADN. Ces résultats suggèrent que DdrC pourrait être une NAP spécifique des Deinococcus, jouant un rôle clé dans la compaction du nucléoïde après irradiation et peut-être plus largement dans la réponse de ces bactéries aux dommages de l’ADN. Ensemble, ces études ont permis de mieux comprendre les mécanismes moléculaires mis en œuvre par ces bactéries radio-résistantes pour organiser et structurer leur nucléoïde et répondre de façon efficace à des stress génotoxiques tels que l’irradiation

    Caractérisations structurale et fonctionnelle des protéines associées aux nucléoïdes de Deinococcus radiodurans et Deinococcus deserti

    No full text
    The bacterium Deinococcus radiodurans is one of the most radiation resistant organisms on earth. This resistance results from multiple mechanisms, including an unusual nucleoid organization. The aim of my thesis was to better understand the organization and dynamics of the nucleoids of D. radiodurans and Deinococcus deserti, a bacterium isolated from the Sahara Desert that also exhibits a strong resistance to UV and ionizing radiation and to prolonged desiccation. Specifically, my studies focused on the nucleoid-associated proteins (or NAPs) of these bacteria - the HU proteins and DNA gyrase which are the most abundant - as well as a Deinococcus-specific NAP, DdrC. The objective was to elucidate the three-dimensional structure of these proteins, to characterize their interactions with DNA, and finally to study their effects on the conformation and compaction of plasmid DNA.Through biochemical studies and atomic force microscopy and electron microscopy analyses, we have highlighted significant differences in the mechanisms of compaction and DNA binding used by the different HU protein homologues from D. radiodurans (DrHU) and D. deserti (DdHU1, DdHU2 and DdHU3). In particular, we have demonstrated a dual role for DrHU in the organization and compaction of plasmid DNA, which can be either condensed or rigidified depending on the concentration of DNA-bound DrHU - a dual function that is not conserved in DdHU1, its closest homolog. We also succeeded in producing two forms of the DNA gyrase, an active form that can be used for functional studies, and a second, more stable, but less active form that is more suitable for structural studies. Finally, our structural studies of DdrC coupled with biochemical and molecular dynamics analyses revealed the three-dimensional structure of DdrC, its oligomerization state, and its mode of binding to DNA. These results suggest that DdrC may be a Deinococcus-specific NAP, playing a key role in nucleoid compaction after irradiation and perhaps more broadly in the DNA damage response of these bacteria. Together, these studies have provided a better understanding of the molecular mechanisms used by these radio-resistant bacteria to organize and structure their nucleoid and respond efficiently to genotoxic stresses such as irradiation.La bactérie Deinococcus radiodurans est l’un des organismes les plus radio-résistants sur terre. Cette résistance résulte d’un ensemble de mécanismes, dont une structuration particulière de son nucléoïde. Mes travaux de thèse avaient pour but de mieux appréhender l’organisation et la dynamique des nucléoïdes de D. radiodurans et de Deinococcus deserti, une bactérie isolée dans le désert du Sahara et présentant également une forte résistance aux rayonnements UV et ionisants et à une dessiccation prolongée. Plus précisément, mes études ont porté sur les protéines associées au nucléoïde (ou NAPs) de ces bactéries - les protéines HU et l'ADN gyrase qui sont les plus abondantes - ainsi qu’une NAP spécifique des Deinococcus, DdrC. L'objectif était d'élucider la structure tridimensionnelle de ces protéines, de caractériser leurs interactions avec l’ADN, et enfin d'étudier leurs effets sur la conformation et la compaction d’ADN plasmidique.Par des études biochimiques et des analyses par microscopie à force atomique et par microscopie électronique, nous avons mis en lumière des différences notables dans les mécanismes de compaction et de liaison à l'ADN entre les différents homologues de la protéine HU de D. radiodurans (DrHU) et de D. deserti (DdHU1, DdHU2 et DdHU3). En particulier, nous avons démontré un double rôle de DrHU dans l’organisation et la compaction de l’ADN plasmidique, qui peut être condensé ou rigidifié en fonction de la concentration de DrHU liée à l’ADN - une double fonction qui n’est pas conservée chez DdHU1, son plus proche homologue. Nous avons également réussi à produire deux formes de l’ADN gyrase, une forme active pouvant être utilisée pour des études fonctionnelles, et une deuxième plus stable, mais moins active, qui est plus adaptée pour des études structurales. Enfin, nos études structurales de DdrC couplées à des analyses biochimiques et de dynamique moléculaire ont révélé la structure tridimensionnelle de DdrC, son état d’oligomérisation et son mode de fixation à l’ADN. Ces résultats suggèrent que DdrC pourrait être une NAP spécifique des Deinococcus, jouant un rôle clé dans la compaction du nucléoïde après irradiation et peut-être plus largement dans la réponse de ces bactéries aux dommages de l’ADN. Ensemble, ces études ont permis de mieux comprendre les mécanismes moléculaires mis en œuvre par ces bactéries radio-résistantes pour organiser et structurer leur nucléoïde et répondre de façon efficace à des stress génotoxiques tels que l’irradiation

    Caractérisations structurale et fonctionnelle des protéines associées aux nucléoïdes de Deinococcus radiodurans et Deinococcus deserti

    No full text
    The bacterium Deinococcus radiodurans is one of the most radiation resistant organisms on earth. This resistance results from multiple mechanisms, including an unusual nucleoid organization. The aim of my thesis was to better understand the organization and dynamics of the nucleoids of D. radiodurans and Deinococcus deserti, a bacterium isolated from the Sahara Desert that also exhibits a strong resistance to UV and ionizing radiation and to prolonged desiccation. Specifically, my studies focused on the nucleoid-associated proteins (or NAPs) of these bacteria - the HU proteins and DNA gyrase which are the most abundant - as well as a Deinococcus-specific NAP, DdrC. The objective was to elucidate the three-dimensional structure of these proteins, to characterize their interactions with DNA, and finally to study their effects on the conformation and compaction of plasmid DNA.Through biochemical studies and atomic force microscopy and electron microscopy analyses, we have highlighted significant differences in the mechanisms of compaction and DNA binding used by the different HU protein homologues from D. radiodurans (DrHU) and D. deserti (DdHU1, DdHU2 and DdHU3). In particular, we have demonstrated a dual role for DrHU in the organization and compaction of plasmid DNA, which can be either condensed or rigidified depending on the concentration of DNA-bound DrHU - a dual function that is not conserved in DdHU1, its closest homolog. We also succeeded in producing two forms of the DNA gyrase, an active form that can be used for functional studies, and a second, more stable, but less active form that is more suitable for structural studies. Finally, our structural studies of DdrC coupled with biochemical and molecular dynamics analyses revealed the three-dimensional structure of DdrC, its oligomerization state, and its mode of binding to DNA. These results suggest that DdrC may be a Deinococcus-specific NAP, playing a key role in nucleoid compaction after irradiation and perhaps more broadly in the DNA damage response of these bacteria. Together, these studies have provided a better understanding of the molecular mechanisms used by these radio-resistant bacteria to organize and structure their nucleoid and respond efficiently to genotoxic stresses such as irradiation.La bactérie Deinococcus radiodurans est l’un des organismes les plus radio-résistants sur terre. Cette résistance résulte d’un ensemble de mécanismes, dont une structuration particulière de son nucléoïde. Mes travaux de thèse avaient pour but de mieux appréhender l’organisation et la dynamique des nucléoïdes de D. radiodurans et de Deinococcus deserti, une bactérie isolée dans le désert du Sahara et présentant également une forte résistance aux rayonnements UV et ionisants et à une dessiccation prolongée. Plus précisément, mes études ont porté sur les protéines associées au nucléoïde (ou NAPs) de ces bactéries - les protéines HU et l'ADN gyrase qui sont les plus abondantes - ainsi qu’une NAP spécifique des Deinococcus, DdrC. L'objectif était d'élucider la structure tridimensionnelle de ces protéines, de caractériser leurs interactions avec l’ADN, et enfin d'étudier leurs effets sur la conformation et la compaction d’ADN plasmidique.Par des études biochimiques et des analyses par microscopie à force atomique et par microscopie électronique, nous avons mis en lumière des différences notables dans les mécanismes de compaction et de liaison à l'ADN entre les différents homologues de la protéine HU de D. radiodurans (DrHU) et de D. deserti (DdHU1, DdHU2 et DdHU3). En particulier, nous avons démontré un double rôle de DrHU dans l’organisation et la compaction de l’ADN plasmidique, qui peut être condensé ou rigidifié en fonction de la concentration de DrHU liée à l’ADN - une double fonction qui n’est pas conservée chez DdHU1, son plus proche homologue. Nous avons également réussi à produire deux formes de l’ADN gyrase, une forme active pouvant être utilisée pour des études fonctionnelles, et une deuxième plus stable, mais moins active, qui est plus adaptée pour des études structurales. Enfin, nos études structurales de DdrC couplées à des analyses biochimiques et de dynamique moléculaire ont révélé la structure tridimensionnelle de DdrC, son état d’oligomérisation et son mode de fixation à l’ADN. Ces résultats suggèrent que DdrC pourrait être une NAP spécifique des Deinococcus, jouant un rôle clé dans la compaction du nucléoïde après irradiation et peut-être plus largement dans la réponse de ces bactéries aux dommages de l’ADN. Ensemble, ces études ont permis de mieux comprendre les mécanismes moléculaires mis en œuvre par ces bactéries radio-résistantes pour organiser et structurer leur nucléoïde et répondre de façon efficace à des stress génotoxiques tels que l’irradiation

    How does Bacillus thuringiensisBacillus\ thuringiensis crystallize such a large diversity of toxins?

    No full text
    International audienceBacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest

    Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins?

    No full text
    International audienceThe development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains

    Nanoscale surface structures of DNA bound to Deinococcus radiodurans HU unveiled by atomic force microscopy.

    No full text
    International audienceThe Deinococcus radiodurans protein HU (DrHU) was shown to be critical for nucleoid activities, yet its functional and structural properties remain largely unexplored. We have applied atomic force microscopy (AFM) imaging to study DrHU binding to pUC19-DNA in vitro and analyzed the topographic structures formed at the nanoscale. At the single-molecule level, AFM imaging allows visualization of super-helical turns on naked DNA surfaces and characterization of free DrHU molecules observed as homodimers. When enhancing the molecular surface structures of AFM images by the Laplacian weight filter, the distribution of bound DrHUs was visibly varied as a function of the DrHU/DNA molar ratio. At a low molar ratio, DrHU binding was found to reduce the volume of condensed DNA configuration by about 50%. We also show that DrHU is capable of bridging distinct DNA segments. Moreover, at a low molar ratio, the binding orientation of individual DrHU dimers could be perceived on partially "open" DNA configuration. At a high molar ratio, DrHU stiffened the DNA molecule and enlarged the spread of the open DNA configuration. Furthermore, a lattice-like pattern could be seen on the surface of DrHU-DNA complex, indicating that DrHU multimerization had occurred leading to the formation of a higher order architecture. Together, our results show that the functional plasticity of DrHU in mediating DNA organization is subject to both the conformational dynamics of DNA molecules and protein abundance

    Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction

    No full text
    International audienceDeinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans . In particular, four Deinococcus -specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans . One of these, DdrC, is expressed shortly after exposure to Îł-radiation and is rapidly recruited to the nucleoid. In vitro , DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans , we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.2 Ă… and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions

    Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction

    No full text
    Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans . In particular, four Deinococcus -specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans . One of these, DdrC, is expressed shortly after exposure to Îł-radiation and is rapidly recruited to the nucleoid. In vitro , DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans , we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.2 Ă… and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions
    corecore