934 research outputs found

    Microbial fuel cells: An overview of current technology

    Get PDF
    Research into alternative renewable energy generation is a priority, due to the ever-increasing concern of climate change. Microbial fuel cells (MFCs) are one potential avenue to be explored, as a partial solution towards combating the over-reliance on fossil fuel based electricity. Limitations have slowed the advancement of MFC development, including low power generation, expensive electrode materials and the inability to scale up MFCs to industrially relevant capacities. However, utilisation of new advanced electrode-materials (i.e. 2D nanomaterials), has promise to advance the field of electromicrobiology. New electrode materials coupled with a more thorough understanding of the mechanisms in which electrogenic bacteria partake in electron transfer could dramatically increase power outputs, potentially reaching the upper extremities of theoretical limits. Continued research into both the electrochemistry and microbiology is of paramount importance in order to achieve industrial-scale development of MFCs. This review gives an overview of the current field and knowledge in regards to MFCs and discusses the known mechanisms underpinning MFC technology, which allows bacteria to facilitate in electron transfer processes. This review focusses specifically on enhancing the performance of MFCs, with the key intrinsic factor currently limiting power output from MFCs being the rate of electron transfer to/from the anode; the use of advanced carbon-based materials as electrode surfaces is discussed

    Superconformal Flavor Simplified

    Get PDF
    A simple explanation of the flavor hierarchies can arise if matter fields interact with a conformal sector and different generations have different anomalous dimensions under the CFT. However, in the original study by Nelson and Strassler many supersymmetric models of this type were considered to be 'incalculable' because the R-charges were not sufficiently constrained by the superpotential. We point out that nearly all such models are calculable with the use of a-maximization. Utilizing this, we construct the simplest vector-like flavor models and discuss their viability. A significant constraint on these models comes from requiring that the visible gauge couplings remain perturbative throughout the conformal window needed to generate the hierarchies. However, we find that there is a small class of simple flavor models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications, references adde

    Combining frequency and time domain approaches to systems with multiple spike train input and output

    Get PDF
    A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to specify how the interactions between the recorded processes contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex systems benefits from a combination of frequency and time domain methods

    Direct Mediation and Metastable Supersymmetry Breaking for SO(10)

    Full text link
    We examine a metastable N=1\mathcal{N}=1 Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson deformations, including multitrace operators and explore embedding an SO(10) parent of the standard model into two weakly gauged flavour sectors. Direct fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY breaking to the MSSM. Gaugino and sfermion masses are computed and compared for each deformation type. We also explore reducing the rank of the magnetic quark matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP

    The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor

    Get PDF
    Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry results demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified in the range of 3–150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-NHS/GA SPE was 0.8 μg/mL, and the biosensor was also found to be effective when tested in artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the voltammetric detection of cadaverine which was also active in the presence of artificial saliva was presented in this study

    The Constraints of Conformal Symmetry on RG Flows

    Full text link
    If the coupling constants in QFT are promoted to functions of space-time, the dependence of the path integral on these couplings is highly constrained by conformal symmetry. We begin the present note by showing that this idea leads to a new proof of Zamolodchikov's theorem. We then review how this simple observation also leads to a derivation of the a-theorem. We exemplify the general procedure in some interacting theories in four space-time dimensions. We concentrate on Banks-Zaks and weakly relevant flows, which can be controlled by ordinary and conformal perturbation theories, respectively. We compute explicitly the dependence of the path integral on the coupling constants and extract the change in the a-anomaly (this agrees with more conventional computations of the same quantity). We also discuss some general properties of the sum rule found in arXiv:1107.3987 and study it in several examples.Comment: 25 pages, 5 figure

    T-Branes and Monodromy

    Get PDF
    We introduce T-branes, or "triangular branes," which are novel non-abelian bound states of branes characterized by the condition that on some loci, their matrix of normal deformations, or Higgs field, is upper triangular. These configurations refine the notion of monodromic branes which have recently played a key role in F-theory phenomenology. We show how localized matter living on complex codimension one subspaces emerge, and explain how to compute their Yukawa couplings, which are localized in complex codimension two. Not only do T-branes clarify what is meant by brane monodromy, they also open up a vast array of new possibilities both for phenomenological constructions and for purely theoretical applications. We show that for a general T-brane, the eigenvalues of the Higgs field can fail to capture the spectrum of localized modes. In particular, this provides a method for evading some constraints on F-theory GUTs which have assumed that the spectral equation for the Higgs field completely determines a local model.Comment: 110 pages, 5 figure

    General Gauge Mediation with Gauge Messengers

    Get PDF
    We generalize the General Gauge Mediation formalism to allow for the possibility of gauge messengers. Gauge messengers occur when charged matter fields of the susy-breaking sector have non-zero F-terms, which leads to tree-level, susy-breaking mass splittings in the gauge fields. A classic example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge messengers. We give a completely general, model independent, current-algebra based analysis of gauge messenger mediation of susy-breaking to the visible sector. Characteristic aspects of gauge messengers include enhanced contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated already at one loop, and also at two loops, and significant one-loop A-terms, already at the messenger scale.Comment: 79 pages, 5 figure
    corecore