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Chapter 3
A Unified Approach to Represent
Network Adaptation Principles
by Network Reification

Abstract In this chapter, the notion of network reification is introduced: a con-
struction by which a given (base) network is extended by adding explicit states
representing the characteristics defining the base network’s structure. This is
explained for temporal-causal networks where connection weights, combination
functions, and speed factors represent the characteristics for Connectivity,
Aggregation, and Timing describing the network structure. Having the network
structure represented in an explicit manner within the extended network enables to
model the adaptation of the base network by dynamics within the reified network:
an adaptive network is represented by a non-adaptive network. It is shown how the
approach provides a unified modeling perspective on representing network adap-
tation principles across different domains. This is illustrated for a number of
well-known network adaptation principles such as for Hebbian learning in Mental
Networks and for network evolution based on homophily in Social Networks.

3.1 Introduction

Reification is a notion that is known from different scientific areas. Literally, it
means representing something abstract as a material or concrete thing
(Merriam-Webster dictionary), or making something abstract more concrete or real
(Oxford dictionaries). Well known examples in linguistics, logic and knowledge
representation domains are representing relations between objects as objects
themselves (reified relations); this enables to introduce variables and relations over
these reified relations. In this way, the expressivity of a language can be extended
substantially. In such a way in logic, statements can be represented by term
expressions over which predicates can be defined. This idea of reification has been
applied in particular to many modeling and programming languages, for example,
logical, functional, and object-oriented languages (e.g., Weyhrauch 1980; Bowen
and Kowalski 1982; Bowen 1985; Sterling and Shapiro 1986; Sterling and Beer
1989; Demers and Malenfant 1995; Galton 2006). Also in fundamental research,
the notion of reification plays an important role. For example, Gödel’s
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famous incompleteness theorems in Mathematical Logic depend on reification of
logical statements by representing them by natural numbers over which predicates
are used to express, for example, (non)provability of such statements (e.g.,
Smorynski 1977; Hofstadter 1979).

In this chapter, the general notion of reification is applied to networks in par-
ticular, and illustrated for a Network-Oriented Modeling approach based on
temporal-causal networks (Treur 2016, 2019). A network (the base network) is
extended by adding explicit network states representing characteristics of the net-
work structure. In a temporal-causal network, the network structure is defined by
three types of characteristics: connection weights (for Connectivity), combination
functions (for Aggregation), and speed factors (for Timing). By reifying these
characteristics of the base network as states in the extended network, and defining
proper causal relations for them and with the other states, an extended, reified
network is obtained which explicitly represents the structure of the base network,
and how this network structure evolves over time. This enables to model dynamics
of the base network by dynamics within the reified network: thus an adaptive
network is represented as a non-adaptive network.

By the introduced concept of network reification it becomes possible to analyse
network adaptation principles from an inherent network modeling perspective.
Applying this, a unified framework is obtained to represent and compare network
adaptation principles across different domains. To illustrate this, a number of
well-known network adaptation principles are analysed and compared, including,
for example, adaptation principles for Hebbian learning for Mental Networks, and
for bonding based on homophily for Social Networks.

In Sect. 3.2 the Network-Oriented Modeling approach based on temporal-causal
networks is briefly summarized. Next, in Sect. 3.3 the idea of reifying the network
structure characteristics by additional reification states representing them is intro-
duced. In Sect. 3.4 it is discussed how causal relations for these reified states can be
defined by which they contribute to an aggregated causal effect on the states in the
base network. In Sect. 3.5 the universal combination function and difference
equation for the base states’ dynamics is briefly presented, which generalises to
reified networks what in Chap. 2 are called basic difference or differential equa-
tions. Section 3.6 shows how the obtained reification approach can be applied to
analyse and unify many well-known network adaptation principles from a
Network-Oriented Modeling perspective. In Sect. 3.7, as an illustration an example
simulation within a developed software environment for network reification shows
how an adaptive speed factor and an adaptive combination function can be used to
model a scenario of a manager who adapts to an organisation. This example
illustrates how the role matrices format to specify a non-reified network’s structure
as introduced in Chap. 2, can be generalised relatively easily to obtain a useful
means to specify a reified network’s structure. In Sect. 3.8 the (im)possibility of
joint reification states for multiple base states or roles is briefly discussed.
Section 3.9 presents an analysis of the added complexity of the reification con-
struction, and Sect. 3.10 is a final discussion.
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3.2 Temporal-Causal Networks: Structure and Dynamics

In general, a network structure is considered to be defined by nodes (or states) and
connections between them. However, this only covers very general aspects of a
network structure in which no distinctions can be made, for example, between
different strengths of connections, and different ways in which multiple connections
to the same node interact and work together. In this sense, in many cases a plain
graph structure provides underspecification of a network structure. Also, Pearl
(2000) points out this problem of underspecification in the context of causal net-
works from the (deterministic) Structural Causal Model perspective. In that context
functions fi for nodes Vi are used to specify how multiple impacts on the same node
Vi should be combined, but this concept is lacking in a plain graph representation:

Every causal model M can be associated with a directed graph, G(M) (…) This graph
merely identifies the endogenous and background variables that have a direct influence on
each Vi; it does not specify the functional form of fi. (Pearl 2000), p. 203

3.2.1 Conceptual Representation of a Temporal-Causal
Network Model

A conceptual representation of the network structure of a temporal-causal network
model does involve representing in a declarative manner states and connections
between them that represent (causal) impacts of states on each other. This part of the
conceptual representation is often depicted in a conceptual picture by a graph with
nodes and directed connections. However, a full conceptual representation of a
temporal-causal network structure also includes a number of labels for such a graph.
First, in reality, not all connections are equally strong, so some notion of strength of a
connection xX,Y is used as a label for connections (Connectivity). Second, a com-
bination function cY(..) to aggregate multiple impacts on a state is used as a label for
states (Aggregation). Third, for each state a notion of speed factor ηY of a state is used
as a label for timing of the state’s processes (Timing). These three notions, called
connection weight, combination function, and speed factor, make the graph of states
and connections a labeled graph. This labeled graph forms the defining network
structure of a temporal-causal network model in the form of a conceptual represen-
tation; see Table 3.1, adopted from (Treur 2019), and see Fig. 3.1 for an example of a
basic fragment of a network with states X1, X2 and Y, and labels xX1;Y , xX2;Y for
connection weights, cY(..) for combination function, and ηY for speed factor.

Combination functions can have different forms, as there are many different
approaches possible to address the issue of combining multiple impacts.
Combination functions provide a way to specify how multiple causal impacts on
this state are aggregated. For this aggregation, pre-defined combination functions
from a library can be used, or modified according to a pre-designed template.
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3.2.2 Numerical Representation of a Temporal-Causal
Network Model

Next it is shown how a conceptual representation (based on states and connections
enriched with labels for connection weights, combination functions, and speed
factors), determines a numerical representation defining the network’s intended
dynamic semantics (Treur 2016), Chap. 2; see Table 3.2, adopted from (Treur
2019). Note that here X1, …, Xk are the states from which state Y gets its incoming
connections.

The difference equations in the last row in Table 3.2 form the numerical rep-
resentation of the dynamics of a temporal-causal network model. They can be used
for simulation and mathematical analysis, and also be written in differential equa-
tion format:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt
dY tð Þ=dt ¼ gY ½cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ� ð3:1Þ

where the Xi are all states from which state Y gets its incoming connections.

Table 3.1 Conceptual representation of a temporal-causal network model: the network structure

Concepts Notation Explanation

States and connections X, Y,
X!Y

Describes the nodes and links of a network structure
(e.g., in graphical or matrix format)

Connection weight xX,Y The connection weight xX,Y 2 [−1, 1] represents the
strength of the causal impact of state X on state
Y through connection X!Y

Aggregating multiple
impacts on a state

cY(..) For each state Y (a reference to) a combination function
cY(..) is chosen to combine the causal impacts of other
states on state Y

Timing of the effect of
impact

ηY For each state Y a speed factor ηY � 0 is used to
represent how fast a state is changing upon causal
impact

Fig. 3.1 A fragment of a temporal-causal network structure in a conceptual labeled graph
representation
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3.2.3 Basic Combination Functions, Their Parameters
and Combining Them

Often used examples of combination functions are shown in Table 3.3. As shown in
Table 3.2 these functions are used by applying them on the single causal impacts
for V1, …, Vk for the states X1, …, Xk from which state Y gets its incoming
connections. They are the identity id(.) for states with impact from only one other
state, the scaled sum combination function ssumk(..) with scaling factor k, and the
simple logistic sum combination function slogisticr,s(..) and advanced logistic sum
combination function alogisticr;s(..), both with steepness r and threshold s; see also
(Treur 2016), Chap. 2, Table 2.10.

Other options for combination functions are the scaled minimum combination
function smink(..), scaled maximum combination function smaxk(..), the Euclidean
combination function of nth-order with scaling factor k (with n any number > 0,

Table 3.2 Numerical representation of a temporal-causal network model: the network dynamics

Concept Representation Explanation

State values
over time t

Y(t) At each time
point t each state
Y in the model
has a real number
value, usually in
the [0, 1] interval

Single causal
impact

impactX;Y ðtÞ ¼ xX;YXðtÞ At t state X with
connection to
state Y has an
impact on Y,
using connection
weight xX,Y

Aggregating
multiple
causal
impacts

aggimpactY ðtÞ
¼ cY ðimpactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ

The aggregated
causal impact of
multiple states Xi

on Y at t, is
determined using
combination
function cY(..)

Timing of
the causal
effect

YðtþDtÞ ¼ YðtÞþ gY aggimpactY ðtÞ � YðtÞ½ �Dt
¼ YðtÞþ gY ½cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt

The causal
impact on Y is
exerted over time
gradually, using
speed factor ηY;
here the Xi are all
states from which
state Y gets its
incoming
connections
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generalising the scaled sum ssumk(..) for n= 1), and the scaled geometric mean
combination function sgeomeank(..).

The above examples of combination functions are called basic combination
functions and in a general format indicated by bcfi(..). As also discussed in Chap. 2,
Sect. 2.3.2 they can be combined to form more complex combination functions by
forming weighted averages of them with combination function weight factors
c1, …, cm as follows

cYðV1; . . .;VkÞ ¼
c1;Y bcf1 V1; . . .;Vkð Þþ . . .þ cm;Y bcfm V1; . . .;Vkð Þ

c1;Y þ . . .þ cm;Y
ð3:2Þ

This type of representation (with the cj,Y depending on time) for combination
functions will also be used for combination function reification in Sect. 3.5. Usually,
combination functions have parameters, for example, a scaling factor k, or steepness
r and threshold s for logistic functions. These combination function parameters can
also be used as arguments in the notation bcfi(..), and denoted by pi,j, so that it
becomes bcfi(p1,1, p1,2, V1, …, Vk) and

cY ðp1;1; p1;2; . . .; p1;m; p1;m;V1; . . .;VkÞ

¼ c1;Ybcf1 p1;1;Y ; p2;1;Y ;V1; . . .;Vk
� �þ . . .þ cm;Ybcfm p1;m;Y ; p2;m;Y ;V1; . . .;Vk

� �
c1;Y þ . . .þ cm;Y

ð3:3Þ

These characteristics c will also be used in an adaptive manner for combination
function reification in the example reified network models described in Sects. 3.6.7
and 3.7.

Table 3.3 Often used combination functions

Name Formula

Identity idðVÞ ¼ V

Scaled sum ssumkðV1; . . .;VkÞ ¼ V1 þ ...þVk
k

Simple logistic slogisticr ; sðV1; . . .;VkÞ ¼ 1
1þe�rðV1 þ ...þVk�sÞ

Advanced logistic alogisticr ; sðV1; . . .;VkÞ ¼ 1
1þe�rðV1 þ ...þVk�sÞ � 1

1þersÞ
h i

1þ e�rsð Þ
Scaled minimum sminkðV1; . . .;VkÞ ¼ minðV1 ;...;VkÞ

k

Scaled maximum smaxkðV1; . . .;VkÞ ¼ maxðV1 ;...;VkÞ
k

Euclidean function eucln;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ ...þVn

k
k

n
q

Scaled geometric mean sgeomeankðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1�...�Vn

k
k

k
q
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3.2.4 Normalisation, Stationary Points and Equilibria
for Temporal-Causal Network Models

Often a combination function is assumed to be normalised by setting a proper
scaling factor value. If the scaling factor is too low, an undesirable artificial upward
bias may occur, and when the scaling factor is too high an artificial downward bias.
Therefore, normalization of the combination functions is important to get a realistic
simulation. The notion of normalisation is defined as follows.

Definition 1 (normalised) A network is normalised if for each state Y it holds
cYðxX1;Y ; . . .;xXk ;Y Þ ¼ 1, where X1, …, Xk are the states from which Y gets its
incoming connections.

As an example, for a Euclidean combination function of nth-order the scaling factor
value choice

kY ¼ xn
X1;Y þ . . .þxn

Xk ;Y

will provide a normalised network. This can be done in general as follows:

Normalising a combination function
If any combination function cY(..) is replaced by c′Y(..) defined as

c0YðV1; . . .;VkÞ ¼ cYðV1; . . .;VkÞ=cYðxX1;Y ; ::;xXk ;YÞ ð3:4Þ

where X1, …, Xk are the states with outgoing connections to Y and assuming
cYðxX1;Y ; . . .;xXk ;Y Þ[ 0 for xXi;Y [ 0, then the network becomes normalised.

For different example functions, following the normalisation step above, their
normalised variants are given by Table 3.4.

Next, this section focuses on some tools that allow to analyse emerging beha-
viour and how it relates to the structure properties. The basic definition is as
follows.

Definition 2 (stationary point and equilibrium) A state Y has a stationary point
at t if dY(t)/dt = 0. The network is in equilibrium at t if every state Y of the model
has a stationary point at t.

Applying this definition to the specific differential equation format for a
temporal-causal network model, the very simple criterion expressed in Lemma 1
can be formulated in terms of the temporal-causal network structure characteristics
xX,Y, cY(..), ηY:

Lemma 1 (Criterion for a stationary point in a temporal-causal network) Let
Y be a state and X1,…, Xk the states with outgoing connections to state Y.
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Then Y has a stationary point at t if and only if

gY ¼ 0 or cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ ¼ Y tð Þ ð3:5Þ

The latter equation is called a stationary point or equilibrium equation. This cri-
terion will be used in Sects. 3.6 and 3.7 to determine in a straightforward manner
the equilibrium equations for states for the different adaptation principles addressed.

3.3 Modeling Adaptive Networks by Network Reification

In general, the structure of a network is described by certain characteristics, such as
connection weights. Usually, these network characteristics are considered static:
they are assumed not to change over a period of time. This stands in the way of
addressing network evolution, where the network structure does change.

Network evolution is studied usually in a hybrid manner by considering a
separate dynamic model for additional variables representing network structure
characteristics. Such a dynamic model is, for example, specified by a numerical
mathematical form of difference or differential equations and a procedural
description to simulate these equations. Such a description is different from and
outside the context of the Network-Oriented Modeling perspective on dynamics
used within the base network itself. In specific applications, still, this extra-network
dynamical model has to interact intensively with the internal network dynamics of
the base network. For example, see Chap. 1, Sect. 1.4, and in particular Fig. 1.2.

Network reification provides a way to address this in a more unified manner,
staying more genuinely within the Network-Oriented Modeling perspective. Using
network reification, the base network is extended by extra network states that rep-
resent the characteristics of the base network structure (Connectivity, Aggregation,
and Timing). In this way, the whole model is specified by one network, a network
extension of the base network. Thus the modeling stays within the network context.
The new additional states representing the values for the network structure charac-
teristics are called reification states for these characteristics. The network charac-
teristics are reified by these states. The reification states are depicted in the upper
plane in Fig. 3.2, together with the dashed lines indicating the representation relations
with the network characteristics of the base network in the lower plane. What can be
reified in temporal-causal networks, in particular, are the following characteristics of
the network structure: the connection weights, combination functions, combination
function parameters, and speed factors. For connection weights xXi;Y and speed
factors ηY their added reification states WXi;Y and HY represent the value of them.

For combination functions cY(..) the general idea is that from a theoretical per-
spective a coding is needed for all options for such functions by numbers; for
example, assuming there is a countable number, the set of all of them is numbered
by natural numbers n = 1, 2, …, and the reified state CY representing them actually
represents that number. This is the general idea for addressing reification of
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combination functions; however, below a more refined approach is shown that is
easier to use in practice.

By adding proper causal connections to the reification states (incoming arrows)
within the extended network, these states are affected and therefore become
adaptive. For many examples of this, see Sects. 3.6 and 3.7. Outward causal
connections from reification states (outgoing downward arrows to the related base
network states) make their intended special effect happen. This will be addressed in
Sect. 3.4; see the pink downward arrows in Fig. 3.3.

3.4 Incorporating the Impact of Downward Causal
Connections for Reification States

The added reification states need connections to obtain a well-connected overall
network. As always, connections of a state are of two types: (1) outgoing connec-
tions, and (2) incoming connections. In the first place outward connections (1) from
the reification states to the states in the base network are needed, in order to model
how they have their special effect on the adaptive dynamics of the base network.
More specifically, it has to be defined how the reification states contribute causally to
an aggregated impact on the base network state. In addition to a downward con-
nection, also the combination function has to be (re)defined for the aggregated
impact on that base state. Both these downward causal relations and the combination
functions are defined in a generic manner, related to the role of a specific network
characteristic in the overall dynamics of a state in a temporal-causal network. That
will be discussed in the current section and in Sect. 3.5.

In addition, incoming connections (2) of the reification states are added in order
to model specific network adaptation principles. These may concern upward con-
nections from the states of the base network to the reification states, or horizontal

Fig. 3.2 Representation relations (the dashed lines) for connection weight reification states WX;Y ,
combination function reification states CY and speed factor reification states HY: network state
WX;Y represents network characteristic xX;Y , network state HY represents network characteristic
ηY, and network state CY represents network characteristic cY(..)
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mutual connections between states within the upper plain, or both, depending on the
specific network adaptation principles addressed. These connections are not generic
but depend on the specific adaptation principle addressed; they will be discussed
and illustrated for many cases in Sects. 3.6 and 3.7.

For the downward connections (1), the general pattern is that each of the reifi-
cation states WXi;Y , HY and CY for the reified network characteristics (connection
weights, speed factors, and combination functions), has a specific causal connection
to state Y in the base network according to its own special role. These are the (pink)
downward arrows from the reification plane to the base plane in Fig. 3.3. Actually,
CY is a vector of states (C1,Y, C2,Y, …) with a (small) number of different com-
ponents C1,Y, C2,Y, … for different basic combination functions that will be
explained below. Note that combination functions may contain some parameters,
for example, for the scaled sum combination function the scaling factor k, and for
the advanced logistic function the steepness r and the threshold s. For these
parameters also reification states Pi,j,Y can be added, with the possibility to make
them adaptive as well. More specifically, for each basic combination function
represented by Cj,Y there are two parameters p1,i and p2,i that are reified by
parameter reification states P1,j,Y and P2,j,Y.

Note that the 3D layout of these figures and the depicted planes are just for
understanding; in a mathematical or computational sense, they are not part of the

Fig. 3.3 Network reification for temporal-causal networks: downward connections from reifica-
tion states to base network states
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network specification. However, for each of the reification states, it is crucial to
know what it is that they are reifying and for what base state. Therefore the names
of the reification states are chosen in such a way that this information is visible. For
example, in the name HY the H indicates that it concerns speed factor (indicated by
η) reification and the subscript Y that it is for base state Y. So, in general, the bold
capital letter R in Rsubscript indicates the type of reification and the subscript the
concerning base state Y, or (for W) the pair of states X, Y. This R indicates the role
that is played by this reification state. This role corresponds one to one to the
characteristics of the base network structure that is reified: connection weight x for
Connectivity, speed factor η for Timing, basic combination function c(..),
and parameter p for Aggregation. The role defines which special effect the reifi-
cation state has on base state Y. By the specific role matrix in which a downward
connection is indicated, the downward connection and the special effect for that role
is completely determined. The reification state with this connection cannot occur in
any other role matrix then. For example, if such a downward link is indicated in role
matrix ms for the speed factors, the value of the reification state can only be used
for the speed factor, not for something else. In this way, there are four roles for
reification states:

• the role of connection weight reification W reifying connection weights x
• the role of speed factor reification H reifying speed factors η
• the role of combination function reification Cj reifying combination functions

c(..)
• the role of parameter reification Pi,j reifying combination function parameters

pi,j

In accordance with this indicated role information, each reification state has
exactly one downward causal connection, which goes to the specified base state Y,
and in the reified network this downward connection has its special effect according
to its role R in the aggregation of the causal impacts on Y by a new, dedicated
combination function. Note that to keep a transparent one-to-one relation between a
reification state representing one of the base network characteristics, and the actual
value used for that characteristic in the dynamics of state Y, the (pink) downward
links get automatically standard weight value 1; this cannot be changed.

The general picture is that the base states have more incoming connections now,
some of which have specific roles, with special effects according to their role.
Therefore, in the reified network new combination functions for the base states are
needed to aggregate these special effects. These new combination functions can be
expressed in a universal manner based on the original combination functions, and
the different reification states, but to define them some work is needed. That will be
done in Sect. 3.5, but also in a more extensive manner in Chap. 10.
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3.5 The Universal Combination Function and Difference
Equation for Reified Networks

In this section, the universal combination function and universal difference (or
differential) equation for base states Y within a reified network are introduced. The
universal difference (or differential) equation generalises what in Chap. 2,
Sects. 2.3.1 and 2.4.2 are called the basic difference (or differential) equations.
Recall from Sect. 3.2, that based on the basic combination functions bcfj(..) from
the library, the general combination function format is expressed in terms of the
network structure characteristics and the single impacts from the base states indi-
cated by V1, …, Vk as follows:

cYðp1;1; p1;2; . . .;p1;m; p1;m;V1; . . .;VkÞ

¼ c1;Y bcf1 p1;1;Y ; p2;1;Y ;V1; . . .;Vk
� �þ . . .þ cm;Ybcfm p1;m;Y ; p2;m;Y ;V1; . . .;Vk

� �
c1;Y þ . . .þ cm;Y

ð3:6Þ

To enable reification, the idea is that all network structure characteristics can
become dynamic. This is the main step made here, compared to Chap. 2. In par-
ticular, within the combination function this holds for the c and p characteristics, so
that these characteristics can get an argument t for time:

cY ðt; p1;1 tð Þ;p1;2 tð Þ; . . .;p1;m tð Þ; p1;m tð Þ;V1; . . .;VkÞ

¼ c1;Y tð Þbcf1 p1;1;Y tð Þ;p2;1;Y tð Þ;V1; . . .;Vk
� �þ . . .þ cm;Y tð Þbcfm p1;m;Y tð Þp2;m;Y tð Þ;V1; . . .;Vk

� �
c1;Y tð Þþ . . .þ cm;Y tð Þ

ð3:7Þ

These combination functions become adaptive if for these dynamic character-
istics c and p, reification states C and P are introduced for their role, as shown in
Fig. 3.3. Within the difference equation also the speed factor ηY and the connection
weights xXi;Y occur. Also, these network structure characteristics can be made
dynamic by adding the argument t, and reification states H and W can be added for
their role (see Fig. 3.3).

YðtþDtÞ ¼ YðtÞþ gY tð Þ½cYðt;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;YðtÞXk tð ÞÞ � Y tð Þ�Dt ð3:8Þ

Using the above expressions (3.7) and (3.8) the difference and differential equation
for state Y can be found based on the appropriate choice of the universal combination
function c*Y(..) for Y in the reified network. This combination function in the reified
network needs arguments for the reification states for all network structure charac-
teristics as they are dynamic now and have an impact on state Y. So, in addition to the
impacts within the original base network the new function c*Y(..) needs additional
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arguments indicated by variables H, C1,…., Cm, P1,1, P2,1,…, P1,m, P2,m,W1,…,Wk

for the special effects of the different types of reification states on state Y, where:

• H is used for the speed factor reification HY(t) representing ηY(t)
• Cj for the combination function weight reification Cj,Y(t) representing cj,Y(t)
• Pi,j for the combination function parameter reification Pi,j,Y(t) representing pi,j,Y(t)
• Wi for the connection weight reification WXi;Y tð Þ representing xXi;Y tð Þ.

It has been found out (for more details, see also Chap. 10) that the function
c*Y(H, C1, …, Cm, P1,1, P2,1, …, P1,m, P2,m, W1, …, Wk, V1, …, Vk, V) that is needed
here can be defined as follows:

c�Y ðH;C1; . . .;Cm;P1;1;P2;1;...; P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1bcf1 P1;1;P2;1;W1V1; ::;WkVk

� �þ . . .þCm bcfm P1;m; P2;m; W1V1; ::;WkVk
� �

C1 þ . . .þCm
þð1� HÞV

ð3:9Þ

where

• Vi for the state values Xi(t) of base states Xi, which are the base states from
which Y gets its incoming connections

• V for the state value Y(t) of base state Y

This combination function shows the way in which the special impacts of the
downward causal connections from the reification states (their special effects)
according to their role are aggregated together with the other impacts within the
base level. Then based on this combination function (and using speed factor with
default value η*Y = 1 and weights 1 for the incoming connections), within the
reified network the universal difference equation for base state Y is

YðtþDtÞ ¼ YðtÞ
þ ½c�Y ðHY tð Þ;C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;
P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ;X1 tð Þ; . . .;XkðtÞ; Y tð ÞÞ�Y tð Þ�Dt

ð3:10Þ

In case of full reification this difference equation does not have any parameter for
the network characteristics, it only has variables; therefore it has a universal form
for every base state. So this is the way in which the special impact of the downward
causal connections from the reification states is incorporated within the
temporal-causal network format.

It can be verified using (3.9) by rewriting that this universal difference equation
in (3.10) indeed is equivalent to the above difference equation in (3.8). For more
explanation and background on this, see Chap. 10. The universal differential
equation variant is as follows (leaving out the reference to t):
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dY=dt

¼ HY
C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; ::;WXk ;YXk

� �þ . . .þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; ::;WXk ;YXk
� �

C1;Y þ . . .þCm;Y
� Y

� �

ð3:11Þ

The universal combination function was introduced above in (3.9) out of the
blue, it may seem. But at least now it was shown that it fulfills what is required. In
Chap. 10, it is shown in more detail how this universal combination function can be
derived and it is illustrated for some cases. From an abstract point of view now it
has been found that the class of temporal-causal network models is closed under the
operation of reification.

Note that there are two important advantages in keeping the reified network in
the form of a temporal-causal network model according to the standard format from
Sect. 3.2. First is that now the reified network itself can also be reified again, in
order to model second-order adaptation principles (as will be described in Chap. 4).
Iteration of the reification step can only be done in a standard manner if every
reification step makes a new temporal-causal network model and not an arbitrary
complex dynamical system.

A second advantage is that mathematical analysis of equilibria can also be
applied in a uniform manner, based on combination functions and the criterion on
stationary points and equilibria formulated using them in Lemma 1 in Sect. 3.2.4.
This allows such a mathematical analysis to relate emerging behaviour to properties
of these combination functions. Chapters 11 to 14 are based on this, where
Chaps. 11 and 12 address combination functions for base networks and Chaps. 13
and 14 address combination functions for reification states (for Hebbian learning
and for bonding by homophily, respectively) at a first reification level. In all of
these chapters, it is explored in general how certain relevant properties of the
network structure entail certain properties of the emerging network behaviour.
Aggregation characteristics as represented by combination functions are an essen-
tial element of the network structure; it turns out that such relevant properties of the
network structure most often involve specific properties of the combination func-
tions such as monotonicity and being scalar-free, sometimes in conjunction with
some Connectivity properties such as the network being strongly connected.

More specifically, in all of these cases in Chaps. 11–14, analysis results were
obtained of the uniform format that certain specific properties of the Aggregation
characteristics as expressed by combination functions (sometimes together with
certain properties of the network’s Connectivity) entail certain properties of the
network’s emerging behaviour, mostly concerning equilibria that are reached.
Typical properties of combination functions that are relevant for a base network are
monotonicity and being scalar-free (see Chaps. 11 and 12). For combination func-
tions describing bonding by homophily, a typical relevant property is having a
tipping point for similarity where ‘being alike’ turns into ‘not being alike’ or con-
versely (see Chap. 13). Also for combination functions for Hebbian learning, some
monotonicity properties turn out relevant for the emerging behaviour (see Chap. 14).
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3.6 Using Network Reification for Unified Modeling
of Network Adaptation Principles

In Sects. 3.4 and 3.5, it has been explained how the special effects of the downward
causal connections for the different roles can be defined in a reified network, and
how their contribution to a joint aggregated causal impact on base network states is
specified by a generically defined universal combination function. This makes the
reified network already work when each of the reification states has a constant
value; it will then work just like a nonadaptive base network. However, availability
of the reification states for the base network structure as explicit network states,
which in principle can change over time, opens the possibility to define network
adaptation principles in a Network-Oriented manner. This can be done by
specifying

(a) The connectivity for reification states:

• proper causal connections to the reification states

(b) The aggregation for reification states:

• proper combination functions for them

(c) The timing for the reification states:

• proper speed factors for the adaptation of them

This is not just specification by an arbitrary separate set of difference or differential
equations or procedural description as for the traditional hybrid approach discussed
in Chap. 1, Sect. 1.4.1 and shown in Fig. 1.2. The reification perspective offers a
framework to specify network adaptation principles in a more transparent, unified
and standardized Network-Oriented manner, and compare them to each other.

This will be illustrated below for a number of examples of well-known network
adaptation principles: Hebbian learning in Mental Networks and homophily in
Social Networks, triadic closure in Mental and Social Networks, and preferential
attachment in Mental and Social Networks. These examples of network adaptation
principles in Sects. 3.6.1–3.6.4 all focus on adaptive connection weights. By far
most of the network adaptation principles described in the literature only concern
Connectivity: they address adaptive connections as adaptive network characteris-
tics. However, in Sects. 3.6.5, 3.6.6 and 3.6.7 it will be shown how other adaptive
network characteristics concerning Aggregation and Timing such as adaptive
excitability, adaptive speed factors and adaptive combination functions can have
interesting applications as well. For example, in a Social Network, response time
may depend on external factors such as workload, which varies over time; this can
be modeled by a speed factor that all the time adapts to this work load. Also in a
Social Network, the way in which someone aggregates opinions from others may
also change over time. For example, due to circumstances such as bad experiences
or new higher management, a manager may change in how inputs from different
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employees are incorporated in his or her own opinions and decision making. These
applications of speed factor reification and combination function reification will be
illustrated in Sect. 3.7 more extensively by an example reified network model and
example simulations.

So, next a number of adaptation principles known from the literature are
addressed. It is shown how they can be modeled by network reification, and, in
particular, their connectivity (in terms of their connections) and their aggregation
(in terms of their combination functions), and the entailed emerging equilibria are
described and analysed.

3.6.1 Network Reification for Adaptation Principles
for Hebbian Learning and Bonding by Homophily

Hebbian learning (Hebb 1949) is based on the principle that strengthening of a
connection between neurons over a period of time may take place when both states
are often active simultaneously: ‘neurons that fire together, wire together’. The
principle itself refers to Hebb (1949), and over time has gained more interest in the
area of computational modeling due to more extensive empirical support (e.g., Bi
and Poo 2001), and more advanced mathematical formulations (e.g., Gerstner and
Kistler 2002).

A different principle in a different domain, namely the bonding based on
homophily principle in Social Science, has exactly the same graphical representa-
tion. This principle states that within a social network the more similar two persons
are, the stronger their connection will become: ‘birds of a feather flock together’
(e.g., McPherson et al. 2001).

Connectivity of the reification states for the Hebbian learning and bonding by
homophily principles
In Fig. 3.4 it is shown how the Hebbian learning principle can be modeled con-
ceptually in a reified network by upward arrows to the reification states for the
connection weights: each connection weight reification state is affected by the two
connected states, for the sake of simplicity with connection weights 1. Moreover, a
connection of WXi;Y to itself is assumed, also with weight 1. For bonding by
homophily, the social network connection is similarly affected by the connected
states as well with weights 1, like for Hebbian learning, so also in that case Fig. 3.4
applies.

So, both cases share the same connectivity. However, this does not hold for their
aggregation: to model these two adaptation principles, the combination functions
still are not the same, as the state values have different effects on the connection
weights; this is addressed next.
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Aggregation by combination functions for the Hebbian learning and bonding
by homophily principles
For Hebbian learning the combination function hebb(..) can be chosen, which is
defined by

hebblðV1;V2;WÞ ¼ V1V2 1�Wð Þþ lW ð3:12Þ

with l being the persistence parameter, where V1 stands for Xi(t), V2 for Y(t) and
W for WXi;Y ðtÞ. This parameter describes in how far a learnt connection persists
over time. Full persistence is indicated by l = 1. If l < 1, then some extent of
extinction takes place; full extinction takes place for l = 0. In the first part of the
formula, the expression V1V2 models the condition ‘neurons that fire together’, and
the factor (1 − W) takes care that the connection weight stays in the [0, 1] interval.
For more options for Hebbian learning functions, see Chap. 14. Note that the
function uses as third argument the current value W of the connection weight; this
assumes that there is a connection from the reification state to itself, although in
conceptual pictures such as in Fig. 3.4 such connections usually are not depicted;
but they are specified in the role matrices. The same applies to many other reifi-
cation states and adaptation principles.

For the bonding by homophily principle by (Blankendaal et al. 2016) or (Treur
2016), Chap. 11, Sect. 11.7, an option for the combination function is the simple
linear homophily function slhomor,s(..):

slhomor; sðV1;V2;WÞ ¼ W þ aðs� V1 � V2j jÞ 1�Wð ÞW ð3:13Þ

Here a is the homophily modulation factor, and s the tipping point. Here the part
(s − |V1 − V2|) models the condition ‘birds of a feather’: this part is positive if the
difference between V1 and V2 is less than the tipping point s (‘birds of a feather’ is
true) and negative when this difference is more than s (‘birds of a feather’ is false).

Fig. 3.4 Reified conceptual modeling of Hebbian learning in Mental Networks or Homophily in
Social Networks
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The factor (1 − W)W takes care that W stays in the [0, 1] interval. As long as W is
not 0 or 1, in the first case by the combination function a positive term is added to
W, the combination function provides a value higher than W, so the connection
weight will increase; in the second case a negative term is added, so the combi-
nation function provides a value lower than W, and the connection weight will
decrease. In Chap. 13 more options for homophily functions are discussed.

Box 3.1 and 3.2 show mathematical analysis of emerging behaviour for these
two adaptation principles.

Box 3.1 Mathematical analysis of emerging behaviour for the Hebbian
learning principle
For a stationary point, applying the criterion (3.5) of Lemma 1 provides the
following equilibrium equation for the above Hebbian learning combination
function:

W ¼ hebblðV1; V2;WÞ ¼ V1V2 1�Wð Þþ lW ,
W ¼ V1V2 � V1V2W þ lW ,
Wð1þ V1V2 � lÞ ¼ V1V2 ,
W ¼ V1V2

1�lþV1V2

For example, when in an equilibrium both V1 and V2 have value 1, then
W ¼ 1

2�l.

Box 3.2 Mathematical analysis of emerging behaviour for the bonding by
homophily principle
For the above combination function for bonding based on homophily case,
for a stationary point applying the criterion (3.5) of Lemma 1 provides the
equilibrium equation:

W ¼ slhomor ; sðV1;V2;WÞ ¼ W þ aðs� V1 � V2j jÞ 1�Wð ÞW ,
aðs� V1 � V2j jÞ 1�Wð ÞW ¼ 0 ,
W ¼ 0 or W ¼ 1 or V1 � V2j j ¼ s

As in simulations, for example, with the scaled sum combination function for
the base states, the third option here often turns out to be not attracting, this
indicates that in an equilibrium a form of clustering is achieved with con-
nection weights 1 between states within one cluster and connection weights 0
between states in different clusters; see also Chap. 13.
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3.6.2 Network Reification for the Triadic Closure
Adaptation Principle

Another adaptivity principle is the triadic closure principle from Social Science
(Rapoport 1953; Granovetter 1973; Banks and Carley 1996): If two persons in a
social network have a common friend, then there is a higher chance that they will
become friends themselves.

Connectivity of the reification states for the triadic closure adaptation principle
The connectivity for this adaptation principle is modeled conceptually in graph
form as shown in Fig. 3.5.
Here horizontal arrows between the reification states describe the effect of triadic
closure. The weights of these connections from WX,Y and WY,Z to WX,Z may be
1 for the sake of simplicity, but may also have different values, for example, to
express that one of the two has more influence than the other one.

Aggregation by a combination function for the triadic closure principle
The combination function for WXZ tð Þ can, for example, be a scaled sum:

ssumkðW1;W2Þ ¼ W1 þW2

k
ð3:14Þ

where W1 indicates WX,Y(t) and W2 indicates WY,Z(t) and when the black horizontal
arrows from WX,Y and WY,Z to WX,Z are assumed to have weight 1, the scaling
factor k can be normalised at 2. Alternatively, a higher-order Euclidean or logistic
sum combination function might be used. For a nth-order Euclidean combination
function it becomes:

eucln;kðW1; W2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn

1 þWn
2

k
n

r
ð3:15Þ

WX,Z

WY,Z

WX,Y

Fig. 3.5 Reified conceptual modeling of the triadic closure principle in Mental and Social
Networks
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There is also a counterpart of this principle in Mental Networks. It is a form of
transitive closure which is implied indirectly by the Hebbian learning principle:
strong connections from X to Y and from Y to Z will make more often X and Z active
at the same time, and therefore their connection will become stronger by Hebbian
learning. Box 3.3 shows mathematical analysis of emerging behaviour for this
adaptation principle.

Box 3.3 Mathematical analysis of emerging behaviour for the triadic closure
principle
For this case for a stationary point applying the criterion (3.5) of Lemma 1
provides the following linear equilibrium equation for W = WX,Z(t):

W ¼ ssumkðW1;W2Þ ¼ W1 þW2ð Þ=k ,

W ¼ W1 þW2ð Þ=k

For the Euclidean combination function, for a stationary point in the nor-
malised case it holds

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn

1 þWn
2

k

r

3.6.3 Network Reification for a Preferential Attachment
Adaptation Principle

Another principle from Social Science is the principle of preferential attachment
(Barabasi and Albert 1999). This principle states that connections to states that
already have more or stronger connections will become more strong.

Connectivity of the reification states for the preferential attachment adaptation
principle
This can be modeled by horizontal connections between the reification states, which
can be applied to multiple other connection weight reification states WXi;Y ; see
Fig. 3.6. The weights of these horizontal connections can be 1 for the sake of
simplicity, or any other values.

Aggregation by a combination function for the preferential attachment
principle
The combination function cWXi ;Y

(..) for the considered reification stateWXi;Y can, for
example, be a scaled sum function.

3.6 Using Network Reification for Unified Modeling of Network … 79



ssumkðW1; . . .;WkÞ ¼ W1 þ . . .þWk

k
ð3:16Þ

where Wj is used for WXj;Y tð Þ and k can be normalised at k. These WXj;Y represent
the weights of all connections of base states Xj to Y, from which the considered Xi is
one. Alternatively, a higher order Euclidean or logistic sum combination function
might be used here. For a nth order Euclidean combination function it becomes

eucln;k W1; . . .;Wkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn

1 þ . . .þWn
k

k
n

r
ð3:17Þ

Also a logistic sum combination function can be used, in which case a higher
number k of connections to Y more clearly leads to a higher weight WXi;Y .

This principle has a counterpart in Mental Networks: for cases that X1 and X2 are
conceptually related so that they often are activated in the same situations, a
stronger connection from X1 to Y leads to more activation of Y and by Hebbian
learning also to a stronger connection from X2 to Y.

Box 3.4 shows a mathematical analysis of emerging behaviour for this adapta-
tion principle.

Box 3.4 Mathematical analysis of emerging behaviour for the preferential
attachment principle
For the scaled sum case, for a stationary point applying the criterion (3.5) of
Lemma 1 provides the following linear equation for W ¼ WXi;Y tð Þ:

W ¼ ssumkðW1; . . .;WkÞ ¼ W1 þ ...þWk
k ,

W ¼ W1 þ ...þWk
k

WX2,Y

WX1,Y

Fig. 3.6 Reified conceptual modeling of preferential attachment in Mental Networks and Social
Networks
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So the connection weight WXi;Y gets the average value of the weights WXj;Y

for all j.
For the Euclidean case, a stationary point in the normalised case it holds

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn

1 þ . . .þWn
k

k
n

r

3.6.4 Network Reification for the State-Connection
Modulation Adaptation Principle

Yet another adaptation principle that applies both to Mental and Social Networks is
the principle of state- connection modulation.

Connectivity of the reification states for the state-connection modulation
adaptation principle
This can be modeled conceptually by upward arrows from control states Zi in the
base network to the reification states of connection weights; see Fig. 3.7. The
weights of these upward connections may be 1 for the sake of simplicity, or any
other value.

For a Mental Network Zi can be a state of extreme stress (Sousa et al. 2012) or a
chemical or medicine (e.g., a neurotransmitter). For a counterpart in a Social
Network, Zi can be a measure for the intensity of the actual interaction (e.g., taking
into account frequency and emotional charge); this can be called the interaction
connects principle (e.g., Treur 2016), Chap. 11.

WX2,Y

WX1,Y

Fig. 3.7 Reified conceptual modeling of state-connection modulation by control state Zi in a
Mental Network or of the interaction connects principle in Social Network with state Zi the
intensity of the interaction
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Aggregation by a combination function for the state-connection modulation
principle
In this case the combination function cWXi ;Y

(..) for WXi;Y can, for example, be the
state-connection modulation function scma(..):

scmaðW ;VÞ ¼ W þ aVWð1�WÞ ð3:18Þ

with a a modulation factor, which can be positive (amplifying effect) or negative
(suppressing effect), where V is used for for Zi(t) and W for WXi;Y tð Þ; for an
application of this, see also Chap. 5 or (Treur and Mohammadi Ziabari 2018). Note
that when this state-connection modulation function scma(W, V) is used in com-
bination with Hebbian learning, auxiliary variables V1, V2 (which are not actually
used by the function) are included in this function, making it scma(V1, V2, W, V) to
get one shared sequence of values used by both functions. Box 3.5 shows a
mathematical analysis of emerging behaviour for this adaptation principle.

Box 3.5 Mathematical analysis of emerging behavior for the state-connection
modulation principle
For this case for a stationary point applying the criterion (3.5) of Lemma 1
provides the following quadratic equation for W ¼ WXi;Y tð Þ:

W ¼ scmaðW ;VÞ ¼ W þ aVWð1�WÞ ,
aVWð1�WÞ ¼ 0 ,
V ¼ 0 or W ¼ 0 or W ¼ 1

3.6.5 Network Reification for Excitability Adaptation
Principles

Next, a number of adaptation principles are addressed that are not related to con-
nection weights. The first concerns excitation adaptation principles. In Chandra and
Barkai 2018) this is explained as follows:

Learning-related cellular changes can be divided into two general groups: modifications
that occur at synapses and modifications in the intrinsic properties of the neurons. While it
is commonly agreed that changes in strength of connections between neurons in the rele-
vant networks underlie memory storage, ample evidence suggests that modifications in
intrinsic neuronal properties may also account for learning related behavioral changes.
Long-lasting modifications in intrinsic excitability are manifested in changes in the neu-
ron’s response to a given extrinsic current (generated by synaptic activity or applied via the
recording electrode). (Chandra and Barkai 2018, p. 30)
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To address dynamic levels of excitability of base states, for a base state Y a
logistic sum combination function is assumed, which has a threshold parameter s.
Decreasing the value of s is increasing excitability of Y, as a lower threshold value
will make that Y becomes more activated. Then a reification state TY can be
included that represents the intrinsic excitability of Y, by the value of the threshold
parameter sY of its logistic sum combination function.

Connectivity of the reification state for the excitability adaptation principle
In Fig. 3.8 the basic connectivity pattern is shown that can be used to model
excitability adaptation principles by network reification. Here c is a context factor
that affects the excitability. Such a pattern is used in Chap. 4 as part of a more
complex (multilevel) reified network model. The weights of the upward connec-
tions may be 1 for the sake of simplicity, or any other value.

Aggregation by a combination function for adaptive excitability
For this reification state TY, a logistic sum combination function can be used, or an
Euclidean function, for example, or any other specific form. In Chap. 4 the
advanced logistic sum combination function is used for TY; see that chapter for
more details.

3.6.6 Network Reification for Response Speed Adaptation
Principles

A person will not always respond to inputs with the same speed. Examples of
factors affecting the response speed are workload (negative influence) or the
availability of support staff (positive influence). A slightly different application is
the presence of certain chemicals in the brain to stimulate or slow down transfer
between neurons (for example, the effect of alcohol or a stress-suppressing medi-
cine on reaction time).

Yc

TY

Fig. 3.8 Reified network model for excitability adaptation principles
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Connectivity of the reification state for speed adaptation
The connectivity is modeled in Fig. 3.9 by two conditions Z1 and Z2 and their
positive and negative connections to the speed factor reification HY. The weights of
the upward connections may be 1 for the sake of simplicity, or any other value.
Aggregation by a combination function for speed adaptation
For this, the combination function cHY (..) can be modeled by the scaled sum
combination function

ssumkðV1;V2Þ ¼ V1 þV2

k
ð3:19Þ

where V1 stands for Z1(t), and V2 for Z2(t), and assuming the upward connections
have weights 1, k can be normalised at 2. Also here alternative options can be used
such as nth-order Euclidean combination functions or logistic combination func-
tions. Box 3.6 shows mathematical analysis of emerging behaviour for this adap-
tation principle.

Box 3.6 Mathematical analysis of emerging behavior for adaptive speed
factors
For the normalised case for a stationary point applying the criterion (3.5) of
Lemma 1 provides the following linear equation for H = HY(t) in relation to
the state values V1 for Z1 and V2 for Z2

H ¼ 1=2 V1 þV2ð Þ

HY

Fig. 3.9 Reified conceptual modeling of an adaptive speed factor under influence of two states Z1
and Z2
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3.6.7 Network Reification for Aggregation Adaptation
Principles

The following is an example of adaptive aggregation by adaptive combination
functions. Suppose a manager wants to represent the opinions of her employees
well within the organisation. She initially supports any proposal of any single
individual employee about a certain issue. This can be modeled by the smaxk(..)
combination function: if one of the input opinions is high, also the manager’s
opinion will become high. After bad experiences within the organisation, she may
gradually move to a different way, based on averaging over the opinions of her
group of employees, which can be modeled by a normalised scaled sum ssumk(..)
with k as the sum of the weights of the incoming connections. Or eventually, she
can decide only to support an idea when all employees share that opinion. This can
be modeled by the smink(..) combination function. So, the following transitions can
take place over time (gradually):

smaxkðð::ÞÞ ! ssumkðð::ÞÞ ! sminkðð::ÞÞ

This may look a bit extreme, but at least makes the idea clear. A more realistic
version may be the following. First the manager aggregates the incoming opinions
by averaging over the group, using the normalised scaled sum ssumk(..), but later
on she gradually moves to using a logistic sum combination function alogisticr;s(..)
where she applies a certain threshold s before she supports the opinion:

ssumkðð::ÞÞ ! alogisticr; sðð::ÞÞ

Connectivity of the reification state for the aggregation adaptation principle
A picture of a graphical representation of a network model for this is shown in
Fig. 3.10. An example simulation for this scenario can be found in Sect. 3.7; see

Fig. 3.10 Reified conceptual modeling of adaptive combination functions under influence of
states Zi
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Figs. 3.12 and 3.13. Here the basic combination function bcf1(..) relating to C1,Y is
ssumk(..) and bcf2(..) relating to C2,Y is alogisticr;s(..). Some condition Z1 in the
organisation starts to affect C1,Y and C2,Y by suppressing the former (negative
connection weight) and increasing the latter (positive connection weight). This will
make the above transition from ssumk(..) to alogisticr;s(..) happen. This scenario
will be addressed in more detail in Sect. 3.7.

An example of adaptive combination functions for a Mental Network can be
found by considering multicriteria decision-making. The valuations for the different
criteria are aggregated according to some function. A person may adapt this
function over time due to learning. For example, first a smink(..) function is used to
model that all criteria should be fulfilled to get a high overall score, but later, after it
was experienced that based on that function almost no decisions were made, a
ssumk(..) function is used to model that the decision should be based on the average
of the valuations for the different criteria.

Aggregation by a combination function for aggregation adaptation
Suppose Z1,…, Zk are the states affecting the combination function reification states
Ci,Y. Note that some of their impacts can be positive and some can be negative
according to the sign of their connection weight xZj;Ci;Y to Ci,Y, and from the
aggregation of their impacts it depends whether Ci,Y(t) will increase or decrease
with t. A first option for the combination function cCi;Y (..) is a scaled sum combi-
nation function to aggregate the impacts of Z1, …, Zk on Ci,Y:

ssumkðV1; . . .;VkÞ ¼ V1 þ . . .þVk

k
ð3:20Þ

where each Vj indicates xZj;Ci;Y Zj(t). Alternatively, a higher order Euclidean or
logistic sum combination function might be used here. For an nth-order Euclidean
combination function it becomes

eucln;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k

k
n

r
ð3:21Þ

Box 3.7 shows a mathematical analysis of emerging behaviour for this adapta-
tion principle. In Sect. 3.7 a more extensive example illustrates this.

Box 3.7 Mathematical analysis of emerging behavior for combination
function adaptation
For a scaled sum combination function, by the criterion (3.5) of Lemma 1 the
following equation for a stationary point is obtained (where C ¼ Ci;Y tð ÞÞ:
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C ¼ V1 þ . . .þVk

k

where each Vj indicates the value xZj;Ci;Y Zj tð Þ. Similarly for an nth order
Euclidean combination function:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k

k
n

r

3.7 A Reified Network Model for Response Speed
Adaptation and Aggregation Adaptation

In this section, following Sects. 3.6.6 and 3.6.7 above, by an example scenario, the
use of an adaptive speed factor and an adaptive combination function in a reified
network is illustrated. Also, the network’s emerging behaviour based on equilib-
rium values will be analysed. Consider, as also discussed in Sect. 3.6.6, within an
organisation a manager of a group of 7 members with their opinions X1, …, X7.
The adaptation focuses on the manager opinion; the manager adapts to the orga-
nization over time. She wants to represent the opinions of the group members well
within the organization and therefore she initially uses a (normalized) scaled sum
function ssumk(..) to aggregate the opinions to some average. However, later on
based on disappointing experiences within the organization, she decides to use a
threshold s through the logistic sum combination function alogisticr;s(..).
Moreover, initially she is busy with other things and only later she gets more time to
respond faster on the input she gets from her group members, so that her speed
factor increases from that time point on.

3.7.1 Conceptual Graphical Representation of the Example
Reified Network Model

In Fig. 3.11 an overview of this reified network is shown; see also Table 3.5 for the
states and their explanation. Note that also group members X1, …, X7 have mutual
connections, but this is not shown in the graph in Fig. 3.11 to keep the picture
simple; see Box 3.8 for these connections. For the same reason the upward con-
nections from all group members to combination function reification state C1,Y have
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been left out; see Box 3.8 for them. Also, the connection from the independent state
‘available time’ to itself has been left out, and the same for independent state
‘disappointment’ representing the disappointing experiences; also see Box 3.8 for
that. The reification states with their speed factors and combination functions, and
connection weights for the incoming connections used to model this scenario are
specified as shown in Box 3.8. Note that it is assumed:

bcf1 ::ð Þ ¼ ssumkð::Þ
bcf2 ::ð Þ ¼ alogisticr ; sð::Þ

So, in the scenario the combination function used for the manager opinion state
will change over time from basic combination function bcf1(..) to bcf2(..), using the
reification states C1,manageropinion and C2,manageropinion.

manager 
opinion

disappointment
available time

C1,manageropinion
manageropinionC2,manageropinion

Fig. 3.11 The considered example adaptive reified network model

Table 3.5 States and their explanation

State    Explanation Level
X1

These 7 states X1 to X7 represent the opinions of the 7 group members
Base 
level

X2

X3

X4

X5

X6

X7

X8 manageropionion The opinion of the manager
X9 availabletime The available time of the manager
X10 disappointment The level of disappointment of the manager
X11 Hmanageropinion The reified representation state for the speed of the manager’s opinion

First 
reification 

level

X12 C1,manageropinion The reified representation state for the weight for the scaled sum combination function to 
aggregate the group members opinions for the manager’s opinion

X13 C2,manageropinion The reified representation state for the weight for the advanced logistic sum combination 
function to aggregate the group members opinions for the manager’s opinion
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The concept of a role matrix as introduced in Chap. 2, Sect. 2.4 is used in a
generalised form here to describe a reified network’s structure. For the role matrices
for this example network model, see Box 3.8. As can be seen, the main difference
with the role matrices in Chap. 2 is that now in the cells in all role matrices there
can be either a value (shaded in green) or the name of a state (shaded in red),
whereas in Chap. 2 only values were used in the role matrices mcw, ms, mcfw, and
mcfp. This is a relatively small step in terms of writing the role matrices, but it
drastically changes the possibilities to model adaptive networks, as it makes that a
non-reified network becomes a reified network. Indicating not a value but a state
name in one of the cells, makes that the network characteristic described by this cell
becomes adaptive and the indicated state becomes a reification state for this char-
acteristic. For example by writing X11 in the cell for manager opinion in the speed
factor role matrix ms in Box 3.8, the speed of change of the manager’s opinion
becomes adaptive according to the (dynamic) value of state X11, and this makes X11

a reification state for this adaptive speed factor (and therefore X11 also is given the
more informative name Hmanageropinion).

For the example reified network in the simulation the group members have
mutual connections as specified by the role matrices mb and mcw in Box 3.8. This
models a form of social contagion in a strongly connected network from which it is
known that it eventually leads to a joint opinion; e.g., see Chap. 11. Note that in
role matrices mb and mcw the cells correspond to all connections that in the picture
in Fig. 3.11 are depicted by upward or horizontal arrows. There are no cells for the
(pink) downward arrows in these two matrices, as these arrows concern special
effects, and automatically get weight value 1 to keep the relation between a base
network characteristic (as used in the dynamics) and its reification one-to-one.
Therefore, the downward arrows from reification states are described in a different
way in one of the other role matrices depending on which role these reification
states describe, and in the cell of the concept they are reifying; see Table 3.6.

3.7.2 Conceptual Role Matrices Representation
of the Example Reified Network Model

The role matrices for the example reified network model are shown in Box 3.8
together with the initial values in iv. Note that the independent dynamics of each of
the states available time and disappointment, which serve as an external input to the
model, were modeled by a logistic sum combination function applied to the con-
nection of the state to itself with specific settings (steepness 18 and threshold
0.2) shown in role matrices mcfw and mcfp.
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3.7.3 Simulation Outcomes for the Example Reified
Network Model

In Fig. 3.12 it is shown how in the simulation the manager’s speed factor and
combination function weights adapt over time, and in Fig. 3.13 the base states are
shown: the group member opinions, the manager’s opinion, and the change in

Table 3.6 Downward causal connections and role matrices: how and where specify what

In model picture State
name

State
number

Role In role matrix

Downward arrow from a
reification state for an
adaptive connection weight
from state X to state Y

WX,Y Xi Connection
weight
reification state
for xX,Y

mcw as notation Xi in the
cell for the weight xX,Y of
the connection from X to Y

Downward arrow from a
reification state for an
adaptive speed factor for
state Y

HY Xj Speed factor
reification state
for ηY

ms as notation Xj in the cell
for the value ηY of the
speed factor of Y

Downward arrow from a
reification state for an
adaptive combination
function weight for state Y

Ci,Y Xk Combination
function weight
reification state
for ci,Y

mcfw as notation Xk in the
cell for the weight ci,Y of
combination function i for
state Y

Downward arrow from a
reification state for an
adaptive combination
function parameter for state
Y

Pi,j,Y Xl Combination
function
parameter
reification state
for pi,j,Y

mcfp as notation Xl in the
cell for the value pi,,j,Y of
parameter j of combination
function i for state Y

speed factor

ssum weight

alogis c weight
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Fig. 3.12 Reified adaptive speed factor and combination function weights for the manager
opinion state
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available time and in disappointment. Note that this is one of those less usual cases
in which state values can be outside the [0, 1] interval. That can also be modelled;
in particular, in case of reification states for some role where values are used only
for the special effects for that role. In this case, within the combination function a
division by the sum of the weights takes place so that finally everything still comes
in the [0, 1] interval. As an alternative, for reification state C1,manageropinion a logistic
sum combination function could have been used instead of a Euclidean function.
Then the values would have stayed in the [0, 1] interval all the time.

Box 3.8 Role matrices for the example reified network model
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It can be seen in Fig. 3.12 that after time point 40 the manager’s speed factor
increases (blue line; with as effect a shorter response time), due to more availability
(the purple line in Fig. 3.12). After time point 140 in Fig. 3.12 a switch is shown
from a dominant weight for the scaled sum function ssum7(..) (purple line) to a
dominant weight for the logistic combination function alogistic5;5:5 xð Þ (red line),
due to increasing disappointment (green line in Fig. 3.12). In Fig. 3.13 it is also
shown how the manager’s opinion is affected by the opinions of the group mem-
bers. Here it can be seen that after time point 140 the manager’s opinion becomes
much lower due to the switch of combination function, which is resulting from the
increase in disappointment (green line).

3.7.4 Analysis of the Equilibria for the Example Reified
Network Model

Here the equilibrium equations for the different states are considered. First, the
independent base states, next the reification states which depend on the independent
states.

Equilibrium equations for the independent base states
Both independent base states have a circular causal relation and use the same
combination function alogistic18;0:2ð::Þ. From the criterion (3.5) in Lemma 1 it is
derived that their equilibrium equations are:

availabletime ¼ alogistic18;0:2 availabletimeð Þ
disappointment ¼ alogistic18;0:2 disapppointmentð Þ ð3:22Þ
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X1 X2
X3 X4
X5 X6
X7 manager opinion
available me disappointment

Fig. 3.13 The effect of the adaptive combination function of the manager on her opinion
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So both have an equation of form x ¼ alogistic18;0:2 xð Þ. In Fig. 3.14 the graphs of
both the functions x and alogistic18;0:2 xð Þ are shown. Given that the equilibrium
values are not close to 0, it can be seen that they cross indeed very close to 1; the
value can be approximately calculated in 12 digits as: x = 0.999999427374. This
differs from 1 less than 10−6. This applies both to available time and to disap-
pointment. Indeed in Fig. 3.14 it is shown that in the simulation they end up very
close to 1.

Equilibrium equations for the reification states
Applying the criterion (3.5) in Lemma 1 to the above specifications in Box 3.8,
directly provides the equilibrium equations for the reification states by the following
relations where H stands for the value of Hmanageropinion, C1 for the value of
C1;manageropinion and C2 for the value of C2;manageropinion:

H ¼ availabletime

C1 ¼ 0:5X1 þ 0:5X2 þ 0:5X3 þ 0:5X4 þ 0:5X5

þ 0:5X6 þ 0:5X7�2:5disapppointment

C2 ¼ disapppointment

ð3:23Þ

Assuming that in the equilibrium it holds Xi(t) = 0.714 for all i = 1, …, 7 (this
depends on the specification of the group members) the second equation can be
rewritten as:

C1 ¼ 2:5�2:5 disapppointment ¼ 2:5 1�disapppointmentð Þ ð3:24Þ

These equilibrium equations show how the equilibrium values of the reification
states depend on the equilibrium values of the independent base states available
time and disappointment. As discussed above, the equilibrium value for available
time and disappointment are very close to 1 (difference from 1 less than 10−6),
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Fig. 3.14 Solving the equilibrium equations for the two independent states availble time and
disappointment
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therefore H and C2 will also be very close to 1, which is confirmed in the simulation
as shown in Fig. 3.12. Moreover, C1 will be very close to 0 (by (3.24); difference
from 0 less than 10−5). This shows that the combination function for manager
opinion indeed switched from the initial scaled sum ssum7(..) to the logistic alo-
gistic5,5.5(..); see how this is also confirmed in Figs. 3.12 and 3.13. Note that in
Chap. 15, Sect. 15.3 more details are given of the difference and differential
equations for this reified network model.

3.8 On Using a Joint Reification State for Multiple Base
States or Multiple Roles

Usually a reification state has one role and is associated to one base state. This also
supports transparency. However there may be specific cases in which one state can
play the role of reification state for multiple states. There could even be situations in
which one state plays multiple roles with respect to a given base state or multiple
base states, but better be very careful to model like this. Be aware that the value of a
reification state is where the characteristic related to its role is maintained, and this
can only be one value. Therefore having a joint reification state for multiple base
states only makes sense as all these base states should keep a joint value for that
characteristic, for example, all have the same speed factor. As soon as there are
differences in these values, the reification state has to split according to these
differences. This will in general also stand in the way to use one reification state for
multiple roles. For example, then the value of this reification state represents both a
speed factor and a connection weight. As these are totally different concepts, it will,
in general, not make sense to have the same value for them. Keeping this in mind,
some examples in which joint reification states might make sense are as follows:

Mental Networks
Chemicals in the brain such as neurotransmitters or drugs or hormones or alcohol or
stress related elements with a global effect on the brain:

• Slowing down or speeding up activation of brain states
(adaptive joint speed factor)

• Lowering thresholds of brain states
(adaptive joint threshold value for a logistic combination function)

Social networks
Social events that affect multiple persons at the same time:

• Due to a joint meeting no-one responds fast to messages or mail
(adaptive joint speed factor)

• Within the meeting the threshold to respond publicly is higher
(adaptive joint threshold value for a logistic combination function)
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• Due to positive atmosphere in a meeting the scaling factor is lower, due to
negative atmosphere scaling factor is higher
(adaptive joint threshold value for a logistic combination function)

• Due to positive atmosphere the threshold to accept/assimilate opinions is lower,
due to negative atmosphere the threshold to accept is higher`
(adaptive joint threshold value for a logistic combination function).

But, as indicated, normally there are differences between individuals and between
states, and to represent these differences, multiple reification states are needed.

3.9 On the Added Complexity for Reification

Note that, as for any dynamical system, by adding adaptivity to a network model,
always complexity is added. In this section, it is discussed how the complexity of a
network increases when reification is applied. It will at most be quadratic in the
number of nodes N and linear in the number of connections M of the original
network, as shown here. More specifically, if m the number of basic combination
functions used in the given network model, then the number of nodes in the reified
network is at most:

N original nodesð Þ
þN nodes for speed factorsð Þ
þN2 nodes for connection weightsð Þ
þmN nodes for combination functionsð Þ

which adds to

2þmþNð ÞN ð3:25Þ

This is quadratic in the number of nodes.
If more general, not all N2 connections are used for reification, but only a

number M of them (which maximally can be N2), the outcome is

2þmð ÞN þM ð3:26Þ

additional nodes. This is linear in the numbers of nodes and connections. Then the
number of connections in the reified network is

M original connection weightsð Þ
þN speed factors to their base statesð Þ
þP

Y indegree Yð Þ ¼ M connection weights to their base statesð Þ
þmN combination function weights to their base statesð Þ
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which adds to

ðmþ 1ÞN þ 2M ð3:27Þ

Also, this is linear in number of nodes and connections. Note, however, that also
connections to the reification states will be needed to get them adaptive. But these
depend on the specific application. If at least one inward connection per reification
state is assumed, this adds at least the number of additional nodes (2 + m)N + M to
the number of added connections. So, then the number of additional connections
becomes

ð2mþ 3ÞN þ 3M ð3:28Þ

which again is linear in numbers of nodes and connections.

3.10 Discussion

In this chapter, it was shown how network structure can be reified in a network by
adding explicit network states representing the characteristics of the network
structure, such as connection weights, combination functions and speed factors.
Parts of this chapter were adopted from (Treur 2018a). This construction of network
reification can provide advantages similar to those found for reification in modeling
and programming languages in other areas of AI and Computer Science, in par-
ticular, substantially enhanced expressiveness (e.g., Weyhrauch 1980; Bowen and
Kowalski 1982; Bowen 1985; Sterling and Shapiro 1986; Sterling and Beer 1989;
Demers and Malenfant 1995; Galton 2006).

A reified network including an explicit representation of the network structure
enables to model dynamics of the original network by dynamics within the reified
network. In this way, an adaptive network can be represented by a non-adaptive
network. The approach is applicable to the whole variety of adaptive processes as
described in Chap. 1, Sect. 1.2.1. It was shown how the approach provides a
unified manner of modeling network adaptation principles, and allows comparison
of such principles across different domains. This was illustrated for known adap-
tation principles for Mental Networks and for Social Networks. Note that this
approach to model network adaptation principles can be applied successfully to any
adaptation principle that is described by (first-order) difference or differential
equations (as usually is their format), as in (Treur 2017, Sect. 3.3), it is shown how
any difference or differential equation can be modeled in the temporal-causal net-
work format.

Note that in the description in this chapter the structure of the base network is
reified but not the structure of the reified network as a whole. In a reification process
always new structures are added which are themselves not reified. As the next step
in Chap. 4 it will be shown how the structure of the reified network also can be
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reified by socalled second-order reification; see also (Treur 2018b). Then the net-
work reification approach becomes applicable to all examples of second- or
higher-order adaptation described in Chap. 1, Sects. 1.2.2 and 1.3. Structures in the
first-order reified network used to model adaptation principles are not reified
themselves in a first-order reification process. In a second-order reified network,
they are reified as well: their structure is explicitly represented by second-order
reification states and their connections, which allows modeling adaptive adaptation
principles. It is possible for any n to repeat the construction n times and obtain
nth-order reification. But still, there will be structures introduced in the step from
n − 1 to n that have no reification. From a theoretical perspective it can also be
considered to repeat the construction infinitely many times, for all natural numbers:
x-order reification, where x is the ordinal for the natural numbers. Then an infinite
network is obtained, which is theoretically well-defined; all structures in this net-
work are reified within the network itself, but it may not be clear whether it can be
applied in practice, or for theoretical questions. This also might be a subject for
future research.
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