6 research outputs found

    Iranian human genome project: Overview of a research process among Iranian ethnicities

    Get PDF
    The Human Genome Project (HGP) refers to the international scientific research program, formally begun in October 1990 and completed in 2003, mainly designated to discover all the human genes, analyzing the structure of human DNA and determining the location of all human genes and also making them accessible for further biological and medical investigations. With the appropriate rationale approach, a similar study has been held in Iran. The study of human genome among Iranian ethnicities (IHGP) has been attempted formally in 2000 through a detailed and fully programmed research among all the major ethnic groups by more than 1,900 samples from all over Iran based on the main demographical and anthropological findings and formally known criteria considered for the international HGP. This paper overviewed the process of the research in the terms of program goals, primary data collection, research designation and methodology and also practical aspects and primary findings of the Iranian genome project and its progress during a nearly 5-year period

    The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report

    Get PDF
    The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities

    Evaluation of surface electromyography of selected neck muscles during the whiplash mechanism in aware and unaware conditions due to safe punching in kickboxing

    No full text
    Abstract Background Kickboxing is considered as a combat sport in progress, in which injuries are frequent and significant, and close injury monitoring is highly recommended. Sports injuries to the head and neck are estimated to cause 70% deaths and 20% permanent disabilities although they are much less common than those to the limbs. Whiplash mechanism involves the rapid extension (opening) and flexion (bending) of neck. The purpose of the current study was to investigate the electromyographic activity of selected muscles in the whiplash mechanism in aware and unaware conditions of the safe punching in kickboxing so that we can design special exercises. Method In the present study, 24 male kickboxing athletes aged 18–40 years were selected based on a purposive sampling method. The surface electromyography (EMG) signals of muscles were recorded with and without awareness of safe punching by using a nine-channel wireless EMG device. Additionally, a nine-channel 3D inertial measurement unit (IMU, wireless,) was utilized to determine the acceleration, kinematics, and angular velocity of the subjects’ head. The statistical dependent t-test was applied to compare the EMG activity of each muscle, as well as its participation ratio. Results The results of statistical analysis represented a significant increase in the EMG activity of sternocleidomastoid (p = 0.001), upper trapezius (p = 0.001) and cervical erector spinae muscles (p = 0.001), as well as the neck extension and flexion angles between the athletes aware (open eyes) and unaware (closed eyes) of the safe punching. Conclusion In this study, the EMG activity of the sternocleidomastoid, upper trapezius, and cervical erector spine muscles in the aware condition was significantly different from the activity under unaware condition. In fact, the intended muscles exhibited significantly different behaviors in preventing extension and flexion in the two conditions

    Iranian human genome project: Overview of a research process among Iranian ethnicities

    Get PDF
    The Human Genome Project (HGP) refers to the international scientific research program, formally begun in October 1990 and completed in 2003, mainly designated to discover all the human genes, analyzing the structure of human DNA and determining the location of all human genes and also making them accessible for further biological and medical investigations. With the appropriate rationale approach, a similar study has been held in Iran. The study of human genome among Iranian ethnicities (IHGP) has been attempted formally in 2000 through a detailed and fully programmed research among all the major ethnic groups by more than 1,900 samples from all over Iran based on the main demographical and anthropological findings and formally known criteria considered for the international HGP. This paper overviewed the process of the research in the terms of program goals, primary data collection, research designation and methodology and also practical aspects and primary findings of the Iranian genome project and its progress during a nearly 5-year period

    Genotypes and in vivo resistance of Plasmodium falciparum isolates in an endemic region of Iran.

    No full text
    Mutations in the dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum have been correlated with and used to detect antifolate treatment failure, such as sulfadoxine-pyrimethamine (SP), in regions endemic for malaria. To determine the association between molecular markers of SP resistance and in vivo drug resistance, a quick and simple technique that detects single nucleotide polymorphisms in the DHFR and DHPS genes, using PCR-ELISA and sequence-specific oligonucleotide probes, was applied to 53 isolates obtained from an in vivo study in Sistan and Baluchistan Province, in southeastern Iran. Overall, 11.3% of these isolates were obtained from patients with SP treatment failure. Four DHFR polymorphisms (codons 51, 59, 108, and 164) and five DHPS polymorphisms (codons 436, 437, 540, 581, and 613) were investigated. Mutations DHFR Asn-108, DHFR Arg-59, and DHPS 436-Ala/Phe were very common (100, 81.1, and 85%, respectively). Plasmodium falciparum was isolated from 96% of patients with at least two DHFR/DHPS mutations. All resistant isolates had at least three mutations. The high prevalence of mutation associated with antifolate resistance may point toward low drug efficacy in the future
    corecore