191 research outputs found

    Comparative Analyses of Two Methods of Backstroke Starting: Conventional and Whip

    Get PDF
    Generally, when a new skill, technique, or style is introduced into a sport, the first attempt to describe the change is by the coach or athlete. The biomechanist will then make a careful review of the mechanics involved, test the principles against the given theory, propose directions for future improvements, or reject the change. This procedure often occurs in the sport of swimming. During the last decade, techniques of competitive swimming have improved, resulting in several record-producing performances by the swimmers. This improvement may be attributed, in part, to coaches, researchers, and authors like Counsilman (1977) and Maglischo (1982), Hay (1985), Kreighbaum and Barthels (1985), among others. Backstroke swimming techniques have benefited from the investiveness of coaches, swimmers, and researchers. Probably much of the credit for initiating change in technique belongs to the backstrokers of the time. Two examples are Olympic champions John Naber in 1976 with his «headabove-water spin» turn and Rick Carey in 1984 with his «whip» start. These methods of turning and starting have been adopted by many coaches and swimmers. Even though the Naber turn and the Carey whip start have gained in popularity, little research has been conducted regarding the mechanics of such techniques. For instance, one of the few studies conducted was on the backstroke turns. Benson (1979) filmed two subjects: John Naber executing his unique turn and Peter Rocca (second to Naber in the 1976 Olympics) doing his standard backstroke turn. An elementary comparative eine analysis was made. Benson determined that the Naber turn was more efficient than the standard backstroke turn. Since scientific information about the backstroke whip start is limited. this study was conducted to fill that void and to serve as a basic for further research

    Flavor SU(3) breaking effects in the chiral unitary model for meson-baryon scatterings

    Full text link
    We examine flavor SU(3) breaking effects on meson-baryon scattering amplitudes in the chiral unitary model. It turns out that the SU(3) breaking, which appears in the leading quark mass term in the chiral expansion, can not explain the channel dependence of the subtraction parameters of the model, which are crucial to reproduce the observed scattering amplitudes and resonance properties.Comment: RevTeX4, 4 pages, 3 figures, 2 table

    Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    Get PDF
    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work

    Baryon polarization in low-energy unpolarized meson-baryon scattering

    Full text link
    We compute the polarization of the final-state baryon, in its rest frame, in low-energy meson--baryon scattering with unpolarized initial state, in Unitarized BChPT. Free parameters are determined by fitting total and differential cross-section data (and spin-asymmetry or polarization data if available) for pKpK^-, pK+pK^+ and pπ+p\pi^+ scattering. We also compare our results with those of leading-order BChPT

    Security threats in network coding-enabled mobile small cells

    Get PDF
    The recent explosive growth of mobile data traffic, the continuously growing demand for higher data rates, and the steadily increasing pressure for higher mobility have led to the fifth-generation mobile networks. To this end, network-coding (NC)-enabled mobile small cells are considered as a promising 5G technology to cover the urban landscape by being set up on-demand at any place, and at any time on any device. In particular, this emerging paradigm has the potential to provide significant benefits to mobile networks as it can decrease packet transmission in wireless multicast, provide network capacity improvement, and achieve robustness to packet losses with low energy consumption. However, despite these significant advantages, NC-enabled mobile small cells are vulnerable to various types of attacks due to the inherent vulnerabilities of NC. Therefore, in this paper, we provide a categorization of potential security attacks in NC-enabled mobile small cells. Particularly, our focus is on the identification and categorization of the main potential security attacks on a scenario architecture of the ongoing EU funded H2020-MSCA project “SECRET” being focused on secure network coding-enabled mobile small cells

    A preliminary modelling investigation into the safe correction zone for high tibial osteotomy

    Get PDF
    Purpose: High tibial osteotomy (HTO) re-aligns the weight-bearing axis (WBA) of the lower limb. The surgery reduces medial load (reducing pain and slowing progression of cartilage damage) while avoiding overloading the lateral compartment. The optimal correction has not been established. This study investigated how different WBA re-alignments affected load distribu- tion in the knee, to consider the optimal post-surgery re-alignment. Methods: We collected motion analysis and 7T MRI data from 3 healthy sub- jects, and combined this data to create sets of subject-specific finite element models (total=45 models). Each set of models simulated a range of potential post-HTO knee re-alignments. We shifted the WBA from its native align- ment to between 40% and 80% medial-lateral tibial width (corresponding to 2.8◦-3.1◦ varus and 8.5◦-9.3◦ valgus), in 3% increments. We then compared stress/pressure distributions in the models. Results/Discussion: Correcting the WBA to 50% tibial width (0◦ varus- valgus) approximately halved medial compartment stresses, with minimal changes to lateral stress levels, but provided little margin for error in under- correction. Correcting the WBA to a more commonly-used 62%-65% tibial width (3.4◦-4.6◦ valgus) further reduced medial stresses but introduced the danger of damaging lateral compartment tissues. To balance optimal loading environment with that of the historical risk of under-correction, we propose a new target: WBA correction to 55% tibial width (1.7◦-1.9◦ valgus), which anatomically represented the apex of the lateral tibial spine. Conclusions: Finite element models can successfully simulate a variety of HTO re-alignments. Correcting the WBA to 55% tibial width (1.7◦-1.9◦ valgus) optimally distributes medial and lateral stresses/pressures

    On the Formation of Collective Memories: The Role of a Dominant Narrator.

    Get PDF
    To test our hypothesis that conversations can contribute to the formation of collective memory, we asked participants to study stories and to recall them individually (pregroup recollection), then as a group (group recounting), and then once again individually (postgroup recollection). One way that postgroup collective memories can be formed under these circumstances is if unshared pregroup recollections in the group recounting influences others\u27 postgroup recollections. In the present research, we explored (using tests of recall and recognition) whether the presence of a dominant narrator can facilitate the emergence of unshared pregroup recollections in a group recounting and whether this emergence is associated with changes in postgroup recollections. We argue that the formation of a collective memory through conversation is not inevitable but is limited by cognitive factors, such as conditions for social contagion, and by situational factors, such as the presence of a narrator

    Consumer perceptions of co-branding alliances: Organizational dissimilarity signals and brand fit

    Get PDF
    This study explores how consumers evaluate co-branding alliances between dissimilar partner firms. Customers are well aware that different firms are behind a co-branded product and observe the partner firms’ characteristics. Drawing on signaling theory, we assert that consumers use organizational characteristics as signals in their assessment of brand fit and for their purchasing decisions. Some organizational signals are beyond the control of the co-branding partners or at least they cannot alter them on short notice. We use a quasi-experimental design and test how co-branding partner dissimilarity affects brand fit perception. The results show that co-branding partner dissimilarity in terms of firm size, industry scope, and country-of-origin image negatively affects brand fit perception. Firm age dissimilarity does not exert significant influence. Because brand fit generally fosters a benevolent consumer attitude towards a co-branding alliance, the findings suggest that high partner dissimilarity may reduce overall co-branding alliance performance
    corecore