595 research outputs found

    Nitrous oxide emissions from the Arabian Sea

    Get PDF
    Dissolved and atmospheric nitrous oxide (N2O) were measured on the legs 3 and 5 of the R/V Meteor cruise 32 in the Arabian Sea. A cruise track along 65°E was followed during both the intermonsoon (May 1995) and the southwest (SW) monsoon (July/August 1995) periods. During the second leg the coastal and open ocean upwelling regions off the Arabian Peninsula were also investigated. Mean N2O saturations for the oceanic regions of the Arabian Sea were in the range of 99–103% during the intermonsoon and 103–230% during the SW monsoon. Computed annual emissions of 0.8–1.5 Tg N2O for the Arabian Sea are considerably higher than previous estimates, indicating that the role of upwelling regions, such as the Arabian Sea, may be more important than previously assumed in global budgets of oceanic N2O emissions

    The Aegean Sea as a source of atmospheric nitrous oxide and methane

    Get PDF
    During the EGAMES (Evasion of GAses from the MEditerranean Sea) expedition in July 1993 we determined the concentrations of nitrous oxide and methane in the atmosphere and in the surface waters of the Aegean Sea, the northwestern Levantine Basin, the eastern Ionian Sea and the Amvrakikos Bay. Both gases were found to be supersaturated in all sampled areas. Nitrous oxide was homogeneously distributed with a mean saturation of 105 ± 2%, showing no differences between shelf and open ocean areas, whereas methane saturation values ranged from about 1.2 times (northwestern Levantine Basin) to more than 5 times solubility equilibrium (Amvrakikos Bay estuary). Therefore the Aegean Sea and the adjacent areas were sources of atmospheric nitrous oxide and methane during the study period

    Preliminary observation on response of waterlogged cotton to different doses of AVG application

    Get PDF
    The obvious symptoms of waterlogging response in cotton are leaf chlorosis (yellowing) and dropping squares & bolls. In addition, Huck (1970) showed that tap root growth stopped within 30 min of reducing the oxygen in the soils, and that the growing point of the root was completely dead within 3 hrs. In other plant species, these responses have been associated with the effect of ethylene, produced in response to lack of oxygen (Pratt, 1953; Jackson, 1984; 1985; Jackson & Drew, 1984; Raskin & Konde, 1984; Stead, 1985; Voesenek & Blom, 1989; Osborne, 1991;Reid & Wu, 1991; Brady & Speirs, 1991; Voesenek et al, 1992; Drew, 1997). Ethylene is known to accelerate premature senescence, defoliation and boll dehiscence in cotton (Hall et al, 1957; Kirzek, 1986), but the involvement of ethylene in cotton's response to waterlogging has not been demonstrated. AVG (aminoethoxyvinylglycine)is an inhibitor of ethylene production. It can be used to indicate the involvement of ethylene production in physiological processes. Improvements in commercial production of AVG provide an exciting opportunity to explore the importance of ethylene production in plant responses to waterlogging in the field. To achieve meaningful results, dose-response tests are necessary to establish the concentration of AVG that is high enough to inhibit ethylene formation while low enough to minimise nonspecific and possibly toxic effects to the plants from AVG itself(Jackson, 1991)

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%

    Greenhouse gases in cold water filaments in the Arabian Sea during the Southwest Monsoon

    Get PDF
    The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gase

    Nitrous oxide in the North Atlantic Ocean

    Get PDF
    In order to get a comprehensive picture of the distribution of nitrous oxide (N2O) in the North Atlantic Ocean, measurements of dissolved nitrous oxide were made during three cruises in the tropical, subtropical and cold-temperate North Atlantic Ocean in October/November 2002, March/April 2004, and May 2002, respectively. To account for the history of atmospheric N2O, we suggest a new depth-dependent calculation of excess N2O (ΔN2O). N2O depth profiles showed supersaturation throughout the water column with a distinct increasing trend from the cold-temperate to the tropical region. Lowest nitrous oxide concentrations, near equilibrium and with an average of 11.0±1.7 nmol L−1, were found in the cold-temperate North Atlantic where the profiles showed no clear maxima. Highest values up to 37.3 nmol L−1 occurred in the tropical North Atlantic with clear maxima at approximately 400 m. A positive correlation of nitrous oxide with nitrate, as well as excess nitrous oxide with the apparent oxygen utilization (AOU), was only observed in the subtropical and tropical regions. Therefore, we conclude that the formation of nitrous oxide via nitrification occurs in the tropical region rather than in the cold-temperate region of the North Atlantic Ocea

    Identification of novel PANDAR protein interaction partners involved in splicing regulation

    Get PDF
    Interactions of long non-coding RNAs (lncRNA) with proteins play important roles in the regulation of many cellular processes. PANDAR (Promotor of CDKN1A Antisense DNA damage Activated RNA) is a lncRNA that is transcribed in a p53-dependent manner from the CDKN1A promoter and is involved in the regulation of proliferation and senescence. Overexpression of PANDAR has been observed in several tumor species and correlated with a poor prognosis for patient survival rate. Depending on the cellular state, PANDAR is known to interact with proteins such as the nuclear transcription factor Y subunit A (NF-YA) and the scaffold attachment factor A (SAF-A). However, a comprehensive analysis of the PANDAR interactome was missing so far. Therefore, we applied peptide nucleic acid (PNA)-based pull-downs combined with quantitative mass spectrometry to identify new protein binding partners. We confirmed potential candidates like U2AF65 and PTBP1, known to be involved in RNA processing. Furthermore, we observed that overexpression of PANDAR leads to a reduced level of the short proapoptotic BCL-X splice variant (BCL-XS) which is regulated by PTBP1. Simultaneous overexpression of PTBP1 was able to rescue this effect. Overall, our data suggest a role for PANDAR in the regulation of splicing events via its interaction partner PTBP1
    • …
    corecore