6,305 research outputs found

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure

    Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4]

    Get PDF

    Anomalous specific heat jump in the heavy fermion superconductor CeCoIn5_5

    Full text link
    We study the anomalously large specific heat jump and its systematic change with pressure in CeCoIn5_5 superconductor. Starting with the general free energy functional of the superconductor for a coupled electron boson system, we derived the analytic result of the specific heat jump of the strong coupling superconductivity occurring in the coupled electron boson system. Then using the two component spin-fermion model we calculate the specific heat coefficient C(T)/TC(T)/T both for the normal and superconducting states and show a good agreement with the experiment of CeCoIn5_5. Our result also clearly demonstrated that the specific heat coefficient C(T)/TC(T)/T of a coupled electron boson system can be freely interpreted as a renormalization either of the electronic or of the bosonic degrees of freedom.Comment: 5 pages, 2 figure

    Stability of two-dimensional spatial solitons in nonlocal nonlinear media

    Get PDF
    We discuss existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear response. We show that such systems, which include thermal nonlinearity and dipolar Bose Einstein condensates, may support a variety of stationary localized structures - including rotating spatial solitons. We also demonstrate that the stability of these structures critically depends on the spatial profile of the nonlocal response function.Comment: 8 pages, 9 figure

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint

    Dynamic Fano Resonance of Quasienergy Excitons in Superlattices

    Full text link
    The dynamic Fano resonance (DFR) between discrete quasienergy excitons and sidebands of their ionization continua is predicted and investigated in dc- and ac-driven semiconductor superlattices. This DFR, well controlled by the ac field, delocalizes the excitons and opens an intrinsic decay channel in nonlinear four-wave mixing signals.Comment: 4pages, 4figure

    Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation

    Full text link
    In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-infrared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 μm\mu m and a high nonlinear index of 1.13.1017^{-17}m2^{2}W1^{-1}. It has a zero-dispersion wavelength around 4.5 μm\mu m and, at this wavelength, a large birefringence of 6.104^{-4} and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 μm\mu m and 3.33-5.78 μm\mu m using femtosecond pumping at 4 μm\mu m and 4.53 μm\mu m, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schr\"odinger equations.Comment: 13 pages, 8 figure

    Controlled switching of discrete solitons in waveguide arrays

    Get PDF
    We suggest an effective method for controlling nonlinear switching in arrays of weakly coupled optical waveguides. We demonstrate the digitized switching of a narrow input beam for up to eleven waveguides in the engineered waveguide arrays.Comment: 15 pages, four figures. Accepted in Optics Letter

    Quasiperiodic Envelope Solitons

    Get PDF
    We analyse nonlinear wave propagation and cascaded self-focusing due to second-harmonic generation in Fibbonacci optical superlattices and introduce a novel concept of nonlinear physics, the quasiperiodic soliton, which describes spatially localized self-trapping of a quasiperiodic wave. We point out a link between the quasiperiodic soliton and partially incoherent spatial solitary waves recently generated experimentally.Comment: Submitted to PRL. 4 pages with 5 figure
    corecore