6 research outputs found

    The effect of drought stress on the green spruce aphid

    Get PDF
    The green spruce aphid, Elatobium abietinum (Walker) (Hemiptera: Aphididae), is the most important defoliating pest of Sitka spruce, Picea sitchensis (Bong.) Carr., in the U.K. Currently, populations of this aphid are limited by freezing periods in the winter, while interactions between climate and other factors regulate population dynamics. Climate change in the U.K. is predicted to result in: (1) warmer winters, improving overwinter survival by aphid populations, and (2) an increase in hot and dry summers, likely to place Sitka spruce under drought stress. These could promote aphid densities and increased damage to the trees, resulting in losses to plant growth and productivity. Few studies have been conducted on the effect of drought stress on arboreal herbivores. This project sought to explore the effects of different intensities of spring-summer drought stress on E. abietinum on Sitka spruce. Populations and their effects on their host plant, in terms of needle retention and impact on tree growth, were observed in a semi-field nursery setting. The performance of individual aphids was also observed under controlled conditions at intervals following bud-burst in spring, and again in autumn. Finally, a study was conducted on the consumption rates of specialist and generalist Coccinellid predators feeding on aphids reared under differing drought intensities. Elatobium abietinum exhibited an overall positive response to moderate intermittent drought stress, while severe stress was typically detrimental. When considered with aphid size, Coccinellid predator consumption rates reflected these findings. Changes to damage levels on Sitka spruce can therefore be expected under drought stress; increases are likely under moderate intermittent stress, though the nature of changes under severe stress levels remain unclear. The results revealed complex interactions between drought stress, E. abietinum and Sitka spruce. Given the potential impact of the aphid, it is important to understand the possible responses under climate change.Open Acces

    Identification of novel pesticides for use against glasshouse invertebrate pests in UK tomatoes and peppers

    Get PDF
    To inform current and future pesticide availability to glasshouse vegetable growers, the current project trialled more than twenty products, including existing industry standards, against four key pests of glasshouse tomatoes and bell peppers. These included experimental conventional chemical pesticides as well as alternative biopesticide and biorational products based on phytochemicals, microbials and physically-acting substances. The results suggest that certain biopesticide products, particularly botanicals, provide good levels of pest control, with the same being true of experimental conventional chemical pesticides not yet recommended for use against these pests on these crops. Efforts are on-going to ensure that results of the current project translate to industry benefit via new pesticide approvals

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Grand challenges in entomology: priorities for action in the coming decades

    Get PDF
    1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. 2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). 3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. 4. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). 5. Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. 6. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change
    corecore