28,851 research outputs found
Interpolating Action for Strings and Membranes - a Study of Symmetries in the Constrained Hamiltonian Approach
A master action for bosonic strings and membranes, interpolating between the
Nambu--Goto and Polyakov formalisms, is discussed. The role of the gauge
symmetries vis-\`{a}-vis reparametrization symmetries of the various actions is
analyzed by a constrained Hamiltonian approach. This analysis reveals the
difference between strings and higher branes, which is essentially tied to a
degree of freedom count. The cosmological term for membranes follows naturally
in this scheme. The conncetion of our aproach with the Arnowitt--Deser--Misner
representation in general relativity is illuminated.Comment: LaTex, 23 pages; discussion on ADM representation included and new
references adde
Dual Projection and Selfduality in Three Dimensions
We discuss the notion of duality and selfduality in the context of the dual
projection operation that creates an internal space of potentials. Contrary to
the prevailing algebraic or group theoretical methods, this technique is
applicable to both even and odd dimensions. The role of parity in the kernel of
the Gauss law to determine the dimensional dependence is clarified. We derive
the appropriate invariant actions, discuss the symmetry groups and their proper
generators. In particular, the novel concept of duality symmetry and
selfduality in Maxwell theory in (2+1) dimensions is analysed in details. The
corresponding action is a 3D version of the familiar duality symmetric
electromagnetic theory in 4D. Finally, the duality symmetric actions in the
different dimensions constructed here manifest both the SO(2) and
symmetries, contrary to conventional results.Comment: 20 pages, late
Characteristics of polar coronal hole jets
High spatial- and temporal-resolution images of coronal hole regions show a
dynamical environment where mass flows and jets are frequently observed. These
jets are believed to be important for the coronal heating and the acceleration
of the fast solar wind. We studied the dynamics of two jets seen in a polar
coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We
observed drift motions related to the evolution and formation of these
small-scale jets, which we tried to model as well. We found observational
evidence that supports the idea that polar jets are very likely produced by
multiple small-scale reconnections occurring at different times in different
locations. These eject plasma blobs that flow up and down with a motion very
similar to a simple ballistic motion. The associated drift speed of the first
jet is estimated to be 27 km s. The average outward speed of
the first jet is km s, well below the escape speed, hence
if simple ballistic motion is considered, the plasma will not escape the Sun.
The second jet was observed in the south polar coronal hole with three XRT
filters, namely, Cpoly, Alpoly, and Almesh filters. We
observed that the second jet drifted at all altitudes along the jet with the
same drift speed of 7 km s. The enhancement in the light curves
of low-temperature EIS lines in the later phase of the jet lifetime and the
shape of the jet's stack plots suggests that the jet material is falls back,
and most likely cools down. To support this conclusion, the observed drifts
were interpreted within a scenario where reconnection progressively shifts
along a magnetic structure, leading to the sequential appearance of jets of
about the same size and physical characteristics. On this basis, we also
propose a simple qualitative model that mimics the observations.Comment: Accepted Astronomy and Astrophysic
Propagating waves in polar coronal holes as seen by SUMER and EIS
To study the dynamics of coronal holes and the role of waves in the
acceleration of the solar wind, spectral observations were performed over polar
coronal hole regions with the SUMER spectrometer on SoHO and the EIS
spectrometer on Hinode. Using these observations, we aim to detect the presence
of propagating waves in the corona and to study their properties. The
observations analysed here consist of SUMER spectra of the Ne VIII 770 A line
(T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using
the wavelet technique, we study line radiance oscillations at different heights
from the limb in the polar coronal hole regions. We detect the presence of long
period oscillations with periods of 10 to 30 min in polar coronal holes. The
oscillations have an amplitude of a few percent in radiance and are not
detectable in line-of-sight velocity. From the time distance maps we find
evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe
XII). These velocities are subsonic and roughly in the same ratio as the
respective sound speeds. We interpret the observed propagating oscillations in
terms of slow magneto-acoustic waves. These waves can be important for the
acceleration of the fast solar wind.Comment: 5 pages, 7 figures Accepted as Astronomy and Astrophysics Lette
Batalin-Tyutin Quantization of the Self-Dual Massive Theory in Three Dimensions
We quantize the self-dual massive theory by using the Batalin-Tyutin
Hamiltonian method, which systematically embeds second class constraint system
into first class one in the extended phase space by introducing the new fields.
Through this analysis we obtain simultaneously the St\"uckelberg scalar term
related to the explicit gauge-breaking effect and the new type of Wess-Zumino
action related to the Chern-Simons term.Comment: 17 pages, SOGANG-HEP 191/9
Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves
We focus on detecting and studying quasi-periodic propagating features that
have been interpreted both in terms of slow magneto-acoustic waves and of high
speed upflows. We analyze long duration spectroscopic observations of the
on-disk part of the south polar coronal hole taken on 1997 February 25 by the
SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the
off-limb region and obtain time--distance maps in intensity, Doppler velocity
and line width. We also perform a cross correlation analysis on different time
series curves at different latitudes. We study average spectral line profiles
at the roots of propagating disturbances and along the propagating ridges, and
perform a red-blue asymmetry analysis. We find the clear presence of
propagating disturbances in intensity and Doppler velocity with a projected
propagation speed of about km s and a periodicity of
14.5 min. To our knowledge, this is the first simultaneous detection
of propagating disturbances in intensity as well as in Doppler velocity in a
coronal hole. During the propagation, an intensity enhancement is associated
with a blue-shifted Doppler velocity. These disturbances are clearly seen in
intensity also at higher latitudes (i.e. closer to the limb), while
disturbances in Doppler velocity becomes faint there. The spectral line
profiles averaged along the propagating ridges are found to be symmetric, to be
well fitted by a single Gaussian, and have no noticeable red-blue asymmetry.
Based on our analysis, we interpret these disturbances in terms of propagating
slow magneto-acoustic waves.Comment: accepted for publication by A&
Fluctuating local moments, itinerant electrons and the magnetocaloric effect: the compositional hypersensitivity of FeRh
We describe an ab-initio Disordered Local Moment Theory for materials with
quenched static compositional disorder traversing first order magnetic phase
transitions. It accounts quantitatively for metamagnetic changes and the
magnetocaloric effect. For perfect stoichiometric B2-ordered FeRh, we calculate
the transition temperature of the ferromagnetic-antiferromagnetic transition to
be 495K and a maximum isothermal entropy change in 2 Tesla of J~K~kg. A large (40\%) component of is
electronic. The transition results from a fine balance of competing electronic
effects which is disturbed by small compositional changes - e.g. swapping just
2\% Fe of `defects' onto the Rh sublattice makes drop by 290K. This
hypersensitivity explains the narrow compositional range of the transition and
impurity doping effects.Comment: 11 pages, 4 figure
Komar energy and Smarr formula for noncommutative Schwarzschild black hole
We calculate the Komar energy for a noncommutative Schwarzschild black
hole. A deformation from the conventional identity is found in the
next to leading order computation in the noncommutative parameter
(i.e. ) which is also consistent
with the fact that the area law now breaks down. This deformation yields a
nonvanishing Komar energy at the extremal point of these black holes.
We then work out the Smarr formula, clearly elaborating the differences from
the standard result , where the mass () of the black hole is
identified with the asymptotic limit of the Komar energy. Similar conclusions
are also shown to hold for a deSitter--Schwarzschild geometry.Comment: 5 pages Late
Enhancing Synchrony in Chaotic Oscillators by Dynamic Relaying
In a chain of mutually coupled oscillators, the coupling threshold for
synchronization between the outermost identical oscillators decreases when a
type of impurity (in terms of parameter mismatch) is introduced in the inner
oscillator(s). The outer oscillators interact indirectly via dynamic relaying,
mediated by the inner oscillator(s). We confirm this enhancing of critical
coupling in the chaotic regimes of R\"ossler system in absence of coupling
delay and in Mackey-Glass system with delay coupling. The enhancing effect is
experimentally verified in electronic circuit of R\"ossler oscillators.Comment: 4 pages, 9 figure
Logarithmic corrections to black hole and black ring entropy in tunneling approach
The tunneling approach beyond semiclassical approximation has been used to
calculate the corrected Hawking temperature and entropy for various black holes
and FRW universe model. We examine their derivations, and prove that the
quantity in the corrected temperature is the explicit function of the only
free parameter (which is an auxiliary parameter defined by
). Our analysis improves previous calculations, and
indicates that the leading order logarithmic correction to entropy is a natural
result of the corrected temperature and the first law of thermodynamics.
Additionally, we apply the tunneling approach beyond semiclassical
approximation to neutral black rings. Based on the analysis, we show that the
entropy of neutral black rings also has a logarithmic leading order correction.Comment: 13 pages, rewritte
- …