30 research outputs found

    Optical spectroscopy of Gaia detected protostars with DOT: can we probe protostellar photospheres?

    Full text link
    Optical spectroscopy offers the most direct view of the stellar properties and the accretion indicators. Standard accretion tracers, such as HβH\beta, HαH\alpha, and, Ca II triplet lines, and most photospheric features, fall in the optical wavelengths. However, these tracers are not readily observable from deeply embedded protostars because of the large line of sight extinction (Av \sim 50-100 mag) toward them. In some cases, however, it is possible to observe protostars at optical wavelengths if the outflow cavity is aligned along the line-of-sight that allows observations of the photosphere, or the envelope is very tenuous and thin such that the extinction is low. In such cases, we can not only detect these protostars at optical wavelengths but also follow up spectroscopically. We have used the HOPS catalog (Furlan et al. 2016) of protostars in Orion to search for optical counterparts for protostars in the Gaia DR3 survey. Out of the 330 protostars in the HOPS sample, an optical counterpart within 2" is detected for 62 of the protostars. For 17 out of 62 optically detected protostars, we obtained optical spectra { (between 5500 to 8900 A˚\AA) using the Aries-Devasthal Faint Object Spectrograph \& Camera (ADFOSC) on the 3.6-m Devasthal Optical Telescope (DOT) and Hanle Faint Object Spectrograph Camera (HFOSC) on 2-m Himalayan Chandra Telescope (HCT)}. We detect strong photospheric features, such as the TiO bands in the spectra {(of 4 protostars)}, hinting that photospheres can form early on in the star formation process. We further determined the spectral types of protostars, which show photospheres similar to a late M-type. Mass accretion rates derived for the protostars are similar to those found for T-Tauri stars, in the range of 107^{-7} to 108^{-8} MM_\odot/yr.Comment: 9 pages, 5 figures accepted in Journal of Astrophysics and Astronomy as part of the "Star formation studies in the context of NIR instruments on 3.6m DOT" special issu

    Imaging of bronchial pathology in antibody deficiency: Data from the European Chest CT Group

    Get PDF
    Studies of chest computed tomography (CT) in patients with primary antibody deficiency syndromes (ADS) suggest a broad range of bronchial pathology. However, there are as yet no multicentre studies to assess the variety of bronchial pathology in this patient group. One of the underlying reasons is the lack of a consensus methodology, a prerequisite to jointly document chest CT findings. We aimed to establish an international platform for the evaluation of bronchial pathology as assessed by chest CT and to describe the range of bronchial pathologies in patients with antibody deficiency. Ffteen immunodeficiency centres from 9 countries evaluated chest CT scans of patients with ADS using a predefined list of potential findings including an extent score for bronchiectasis. Data of 282 patients with ADS were collected. Patients with common variable immunodeficiency disorders (CVID) comprised the largest subgroup (232 patients, 82.3%). Eighty percent of CVID patients had radiological evidence of bronchial pathology including bronchiectasis in 61%, bronchial wall thickening in 44% and mucus plugging in 29%. Bronchiectasis was detected in 44% of CVID patients aged less than 20 years. Cough was a better predictor for bronchiectasis than spirometry values. Delay of diagnosis as well as duration of disease correlated positively with presence of bronchiectasis. The use of consensus diagnostic criteria and a pre-defined list of bronchial pathologies allows for comparison of chest CT data in multicentre studies. Our data suggest a high prevalence of bronchial pathology in CVID due to late diagnosis or duration of disease
    corecore