79 research outputs found

    Isolation of inhibin like peptides from human placenta

    Get PDF
    Two moieties of inhibin could be obtained by chromatography of partially purified preparations of inhibin from human placenta on Sephadex G-100, G-25 and ion exchange chromatography on diethylaminoethyl Sephadex A-50. The higher molecular weight moiety (14,000) designated as HPI-H appears to be similar to inhibin from human seminal plasma. While the lower molecular weight moiety (1500) designated as HPI-L appears to be similar to that of sheep testicular inhibin. The preparations from both human term placenta and human seminal plasma inhibited the binding of [125I] human follicle stimulating hormone to rat testicular receptors. This effect of inhibins could be neutralized by antisera raised against corresponding polypeptide. Further these antibodies could neutralize endogenous inhibin resulting in 2 to 3 fold increase in serum follicle stimulating harmone levels, which could then be reversed by exogenous administration of the isolated inhibin preparations

    Possible transmission of HIV Infection due to human bite

    Get PDF
    The potential risk of HIV-1 infection following human bite although epidemiologically insignificant, but it is biologically possible. There are anecdotal reports of HIV transmission by human bites particularly if saliva is mixed with blood. The oral tissues support HIV replication and may serve as a previously unrecognized HIV reservoir. The HIV infected individuals have more viruses in blood than saliva, possibly due to the potent HIV-inhibitory properties of saliva. The case presented here is of a primary HIV infections following a human bite where in the saliva was not blood stained but it got smeared on a raw nail bed of a recipient. The blood and saliva of the source and blood of the recipient showed a detectable viral load with 91% sequence homology of C2-V3 region of HIV gp120 between the two individuals. The recipient did not receive PEP [post exposure prophylaxis] as his family physician was unaware of salivary transmission. The family physician should have taken PEP decision after proper evaluation of the severe and bleeding bite. Hence it is necessary to treat the HIV infected human bites with post exposure prophylaxis

    HIV gp120 Binds to Mannose Receptor on Vaginal Epithelial Cells and Induces Production of Matrix Metalloproteinases

    Get PDF
    BACKGROUND: During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR) as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs) downstream of HIV gp120 binding to hMR. PRINCIPAL FINDINGS: Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line) and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. CONCLUSION: hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the vaginal epithelium

    Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells

    Get PDF
    Semen is the main vector for HIV-1 dissemination worldwide. It contains three major sources of infectious virus: free virions, infected leukocytes, and spermatozoa-associated virions. We focused on the interaction of HIV-1 with human spermatozoa and dendritic cells (DCs). We report that heparan sulfate is expressed in spermatozoa and plays an important role in the capture of HIV-1. Spermatozoa-attached virus is efficiently transmitted to DCs, macrophages, and T cells. Interaction of spermatozoa with DCs not only leads to the transmission of HIV-1 and the internalization of the spermatozoa but also results in the phenotypic maturation of DCs and the production of IL-10 but not IL-12p70. At low values of extracellular pH (∼6.5 pH units), similar to those found in the vaginal mucosa after sexual intercourse, the binding of HIV-1 to the spermatozoa and the consequent transmission of HIV-1 to DCs were strongly enhanced. Our observations support the notion that far from being a passive carrier, spermatozoa acting in concert with DCs might affect the early course of sexual transmission of HIV-1 infection

    Body’s Proteins to Your Defense!

    No full text
    46-48Antimicrobial proteins (AMPs) present in animals, plants and even humans are the body’s warriors fending off attacks from a wide range of microbes including bacteria, fungi, viruses and protozoa

    Development of antifertility vaccine using sperm specific proteins

    No full text
    Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4), protein hyaluronidase (PH-20), and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA) is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT) and its peptides (Peptides 1, 2, 3 and 4) obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH) conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine

    Increased activity of goat liver plasma membrane alkaline phosphatase upon release by phosphatidylinositol-specific phospholipase C

    No full text
    263-270Mammalian alkaline phosphatase (ALP) is attached to the plasma membrane by a unique glycosylphosphatidylinositol (GPI) anchor. The influence of such a complex anchoring device on the enzyme function is not fully understood. Here, we report the effect of cleavage of the GPI anchor on the activity of goat liver plasma membrane ALP (GLPM-ALP). Phosphatidylinositol-specific phospholipase C (PI-PLC) purified from Bacillus cereus was used for the cleavage of the GPI anchor (delipidation) and hence for release of ALP from the membrane. Detergents — octyl-β-D-glucopyranoside (OG) and triton X100 (TX100) were also used for solubilization of ALP from the membrane. Resistance to solubilization by TX100 suggested the association of GPI-ALP with lipid rafts. Solubilization of GLPM-ALP with OG had no effect on the enzyme activity; however, delipidation with PI-PLC resulted in enhanced ALP activity. Kinetic analysis showed catalytic activation of PI-PLC-treated GLPM-ALP with an increase in Vmax (35%) without a significant change in Km. Moreover, this change in Vmax was observed to be independent of pH and buffer. The results suggested the implication of GPI anchor in modulating the catalytic property of GLPM-ALP, thus indicating the role of this special anchoring structure in the enzyme regulation

    Evaluation of cystatin C activities against HIV

    No full text
    Background & objectives: Several host defense proteins known to possess antimicrobial activities are present on mucosal surfaces and are consequently found in body fluids of vertebrates. Naturally occurring protease inhibitors like cystatins, especially cystatin C (cys C), are abundantly present in human seminal plasma. Although its antiviral activity against herpes simplex virus (HSV) has been demonstrated, the role of this protein against HIV is not well studied. Therefore, the aim of the present study was to evaluate the anti-HIV activities of cys C, which is present innately in the male reproductive tract. Methods: Protein-protein interaction of cys C with various HIV proteins was studied using a commercially available HIV blot and specific interaction with HIV protease was studied by dot-blot technique using commercially available cys C. To purify biologically active cys C from human seminal plasma to be used for subsequent experiments, gel-permeation chromatography followed by affinity chromatography was used. The HIV infectivity inhibition activity of the purified cystatin C was tested in TZM-bl cells. To study its activity on HIV protease, time-course enzyme kinetics studies were performed using spectrometric assay. Results: Cystatin C reacted with some HIV proteins including HIV protease. Biologically active cys C was purified using gel permeation chromatography followed by affinity chromatography. When tested in TZM-bl cells, purified cystatin C demonstrated HIV-infectivity inhibitory activity (IC 50: 0.28 μM). Enzyme kinetic studies demonstrated that it abrogated the action of HIV protease on its substrate. Interpretation & conclusions: The present data demonstrate that cystatin C possesses anti-HIV activities. Molecular models need to be designed with this protein which would assist towards prevention/ therapeutics against HIV
    corecore