307 research outputs found

    SDTrimSP-2D: Simulation of Particles Bombarding on a Two Dimensional Target - Version 2.0

    Get PDF

    Rotational symmetry breaking in small-area circular vertical cavity surface emitting lasers

    Get PDF
    We investigate theoretically the dynamics of three low-order transverse modes in a small-area vertical cavity surface emitting laser. We demonstrate the breaking of axial symmetry of the transverse field distribution in such a device. In particular, we show that if the linewidth enhancement factor is sufficiently large dynamical regimes with broken axial symmetry can exist up to very high diffusion coefficients  10 um^2/ns

    A model equation for ultrashort optical pulses

    Get PDF
    The nonlinear Schrödinger equation based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function such that the resonances are naturally accounted for. This approach allows us to derive a simple non-envelope model for short pulses propagating in one spatial dimension. This model is further investigated numerically and analytically

    Dynamical regimes of multi-stripe laser array with external off-axis feedback

    Get PDF
    We study theoretically the dynamics of a multistripe laser array with an external cavity formed by either a single or two off-axis feedback mirrors, which allow to select a single lateral mode with transversely modulated intensity distribution. We derive and analyze a reduced model of such an array based on a set of delay differential equations taking into account transverse carrier grating in the semiconductor medium. With the help of the bifurcation analysis of the reduced model we show the existence of single and multimode instabilities leading to periodic and irregular pulsations of the output intensity. In particular, we observe a multimode instability leading to a periodic regime with anti-phase oscillating intensities of the two counter-propagating waves in the external cavity. This is in agreement with the result obtained earlier with the help of a 2+1 dimensional traveling wave mode

    Harmonic mode-locking in monolithic semiconductor lasers: Theory, simulations and experiment

    Get PDF
    We study both theoretically and experimentally typical operation regimes of 40 GHz monolithic mode-locked lasers. The underlying Traveling Wave Equation model reveals quantitative agreement for characteristics of the fundamental mode-locking as pulse width and repetition frequency tuning, as well as qualitative agreement with the experiments for other dynamic regimes. Especially the appearance of stable harmonic mode-locking at 80 GHz has been predicted theoretically and confirmed by measurements. Furthermore, we derive and apply a simplified Delay-Differential Equation model which guides us to a qualitative analysis of bifurcations responsible for the appearance and the breakup of different mode-locking regimes. Higher harmonics of mode-locking are predicted by this model as well

    Particle-in-cell Simulation Concerning Heat-flux Mitigation Using Electromagnetic Fields

    Get PDF
    The Particle-in-Cell (PIC) method was used to study heat flux mitigation experiments with argon. In the experiment it was shown that a magnetic field allows to reduce the heat flux towards a target. PIC is well-suited for plasma simulation, giving the chance to get a better basic understanding of the underlying physics. The simulation demonstrates the importance of a self-consistent neutral-plasma description to understand the effect of heat flux reduction

    Solutioin of Poisson's Equation in Electrostatic Particle-on-cell Simulation

    Get PDF
    In electrostatic Particle-in-Cell simulations of the HEMP-DM3a ion thruster the role of different solution strategies for Poisson?s equation was investigated. The direct solution method of LU decomposition is compared to a stationary iterative method, the successive over-relaxation solver. Results and runtime of solvers were compared, and an outlook on further improvements and developments is presented

    Dynamical regimes in a monolithic passively mode-locked quantum dot laser

    Get PDF
    Operation regimes of a two section monolithic quantum dot (QD) mode-locked laser are studied experimentally and theoretically, using a model that takes into account carrier exchange between QD ground state and 2D reservoir of a QD-in-a-well structure, and experimentally. It is shown analytically and numerically that, when the absorber section is long enough, the laser exhibits bistability between laser off state and different mode-locking regimes. The Q-switching instability leading to slow modulation of the mode-locked pulse peak intensity is completely eliminated in this case. When, on the contrary, the absorber length is rather short, in addition to usual Q-switched mode-locking, pure Q-switching regimes are predicted theoretically and observed experimentally

    Influence of Electron Sources on the Near-field Plume in a Multistage Plasma Thruster

    Get PDF
    n order to obtain a better understanding of the near-field plume of a multistage plasma thruster, the influence of an external electron source is investigated by Particle-In-Cell simulations. The variation of the source position showed a strong influence of the magnetic field configuration on the electron distribution and therefore on the plume plasma. In the second part of this work, higher energetic electrons were injected in order to model collision-induced diffusion in the plume. This broadens the electron distribution, which leads to a more pronounced divergence angle in the angular ion distribution
    corecore