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1. Introduction

The new program version is based on the one-dimensional TRIMM, TRIDYN and
SDTrimSP (Static and Dynamic Trim for Sequential and Parallel computer) codes de-
scribed in [1], [2], [3] and [4]. All these programs simulate the interaction of energetic
particles with solids using the binary collision approximation.

The particle (projectile), impinging from outside on the solid (target), can be a neu-
tral atom or an ion. If a projectile penetrates a solid target it will be scattered due
to collisions with target atoms, which lead to an elastic energy loss and to a change of
direction. In addition, the projectiles suffer an inelastic energy loss due to collisions with
electrons. When the projectiles have lost all their energy, they are stuck in the target.
Other possibilities are that the projectiles are backscattered after some collisions or that
they are transmitted.

The energy lost by a projectile in a collision is transferred to a target atom (recoil),
which itself can collide with other target atoms. If its energy is large enough the recoil
can also leave the target (backward or transmission sputtering).

The movement of particles take place in three dimensions. The target is resolved in
only one dimension in the program SDTrimSP. It consists of layers, which have different
thickness and varying composition.

In this new 2-D version the target is resolved in two dimensions (SDTrimSP-2D), allow-
ing to account for effects of roughness on the scattering and sputtering and to model
dynamical morphological changes.

This report is an extension of the previous version (IPP 12/4).
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2. Geometry

2. Geometry

The main difference between SDTrimSP [5] and SDTrimSP-2D is the mapping of the
target geometry. In SDTrimSP the target is one dimensional (Fig. 1a) and treated as a
stack of layers in X direction, while Y and Z direction are taken as infinite. The code can
be used in two different modes: In ’static mode’ the target is fixed, while in ’dynamical
mode’ the thickness of layers is changeable.

The expansion into a second dimension makes it possible to describe target surface
profiles and their dynamic change. The target in SDTrimSP-2D is therefor a regular
grid in X- and Z-direction, while Y direction stays infinite, shown in Fig. 1b.

Figure 1: Geometry of one dimensional target a) and two dimensional target b)

A right-handed coordinate system (X2D, Y2D, Z2D) is used in the new code to describe
particle positions and cell geometry. Fig. 2 shows the definition of polar and azimuthal
angles (blue) in comparison to the coordinate system used in SDTrimSP (red) and
SDTrimSP-2D (black). The coordinate origin is fixed and not movable, like in SDTrimSP.

Figure 2: Definition of the coordinates, polar (α) and azimuthal (β) angle
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Each cell in the two dimensional grid has 4 active surfaces and directions (left, right,
bottom and top), that are described in Fig. 3. The surface-indices are counted from one
to four in the program, while for better handling direction-indices are ranging from -2
to +2.

Figure 3: Indices of directions and surfaces of one cell used in the program.

To be able to treat the 2D problem additional features were introduced. There are two
kinds of cells, depending on their location in the target labeled as active or passive.

Passive cells, P, can not change their geometry and their volume is constant. If these
cells swell or shrink, a relaxation is only possible due to volume- and particle-fluxes to
neighboring cells, Fig. 4. The handling of this process is described in section 4.

✲x

✻
z

P P P P

P P P

Figure 4: Target geometry with passive (P) or active grid cells.
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2. Geometry

Active cells, A, have at minimum one open boundary and their size can even be smaller
than the mesh, thus their volume isn’t constant in contradiction to passive cells. Active
cells can only have one or two open boundaries. Some possible settings of active cells
are shown in Fig. 5. Case (a) demonstrates an active surface cell with open boundaries
to the upper and right side. Due to the neighboring active cell on the left side this
boundary is not open. In case (b) the active cell is pinched between two passive cells.
The resulting open boundaries are at top and bottom. Case (c) and (d) are examples
for active cells with only one open boundary. This is possible, if the active cell has three
or only one neighboring cell.
Growth and shrinkage processes of the target can only occur at open boundaries.

✻

✻

✻

✲

✻

❄

a) b)

c) d)

A

A

A

A

Figure 5: Examples of active cells (A) with two (a, b) and one (c, d) open
boundaries.

During a simulation run cells might change their status from active to passive and back-
wards, depending on the movement of particles in the surrounding cells. Three different
examples of active cell behaviour are shown in Fig. 6.

Case 1 is the simple volume change of active cells, that are able to swell (+) or shrink
(-) inside the grid. If the reduction of the volume is greater than the cell-volume the cell
is deleted and the next cell gets the status active (boundary) cell (case 2). If the new
volume is greater than the standard cell-volume new active cells are created (case 3).
This calculation is performed in subroutine ’change vol’.

A closer look into calculation of the cell volume change is given in the next chapter.
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+−
✲

case 1: cells swell or shrink

−−
✲

case 2: cells shrink until deletion and neighboring cells shrink further

++
✲

case 3: cells swell to maximum and new cells are created

Figure 6: Change of geometry of active cells, right side: cells after relaxation.

3. Change of cell volume

Due to the constant flux of particles onto the target during a simulation, its composition
and thus the volume of layers (cells) changes dynamically.

The number of implanted projectiles uim, the number of recoils transferred into uin and
the number of atoms removed from a layer (cell) into another layer (cell) or sputtered
uout are determined after the bombardment of a target with nr pseudo-particles (in
program: nr pproj ). The probability that one incident particle changes the number of
atoms in one layer or cell is N0:

N0(j) =
uim(j) + uin(j)− uout(j)

nr
j ... species of atoms (j = 1...ncp) (3.1)

The composition of the target is updated after one fluence step, which is the quotient of
fluence flc and number of fluence steps maxhist:

∆flc =
flc

maxhist
( in program: fluc step)
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3. Change of cell volume

The atomic composition of target determines the atomic fraction qu and the number of
species is ncp. The sum of all atomic fractions qu is one.

ncp
∑

j=1

qu(j) = 1

In some cases it is necessary to define a maximum allowed atomic fraction. This maxi-
mum allowed atomic fraction qumax

a can be defined in order to simulate local saturation
phenomena, see [2].

If a maximum for one species (a) is given, the number of particles can be calculated
accordingly:

Nm(a)max =
qumax

a

1− qumax
a

·
(

ncp
∑

j=1

N0(j)−N0(a)
)

N ′

0(a) = max(Nm(a)max, N0(a))

If two maxima qumax
a and qumax

b are given for two species a and b, then the number of
particles are :

N ′

0(a) =
Qa ·Qb +Qa

1−Qa ·Qb
·
(

ncp
∑

j=1

N0(j)−N0(a)−N0(b)
)

N ′

0(b) = Qb ·
(

ncp
∑

j=1

N0(j)−N0(a)−N0(b) +N ′

0(a)
)

with:

Qa =
qumax

a

1− qumax
a

Qb =
qumax

b

1− qumax
b

In the following 1D and 2D solution to the change of ’volume’ are described.
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SDTrimSP

In the program SDTrimSP [5] the new absolute number of atoms after one fluence-step
∆flc is N1D

1 (j) (normalized to ∆x ·∆y), i.e. it is equivalent to the areal density. The
thickness of one layer is ∆z, the atomic fraction is qu and the number density of the
pure solid is ̺0. The new thickness of the layer znew and the new volume Vnew of one
layer can be calculated according to the following formula:

Vnew = znew ·∆x ·∆y =
j

∑ N1D
1 (j)

̺0(j)
·∆x ·∆y

znew =
j

∑ N1D
1 (j)

̺0(j)

with:

N1D
1 (j) = ∆N +N = N0(j) ·∆flc+ quold(j) · ̺old ·∆z

SDTrimSP-2D

In the program with 2D-targets the number of atoms in one cell is the sum of implanted
projectiles, the number of recoils transferred into, the number of atoms removed from
the cell (eq. 3.1) and the number of existing atoms (old) after one fluence step is:

N1(j) = N0(j) ·∆flc ·Aflc + quold(j) · ̺old · Vc

The new volume is:

Vnew = ∆Vc + Vc =
j

∑ N1(j)

̺0(j)

If Vc and Vnew are known, the change of the volume ∆Vc can be calculated.

To calculate the volume change a value for the real beam surface is needed in simulations
with SDTrimSP-2D. Besides one has to keep in mind that the target in SDTrimSP-2D
can be one (like SDtrimSP) or two dimensional.
For 1-D cases, see Fig. 18, the cells are so large that they can be treated as a layer. In
this case the ∆x of the cell must be much greater than the maximum of x-values during
a particle cascade. This is the same geometry as in the code SDTrimSP. The infinite
extension in the y-direction is achieved by a large value of ∆ycell of all cells. In this case,
the real beam surface Aflc can be calculated using the cell geometry:

Aflc = ∆xcell ·∆ycell (1-D)

In the 2-D case, the real beam surface Aflc can be calculated using the cell and beam
geometry :

Aflc = ∆xbeam ·∆ycell (2-D) (in program: Aflc ... beam geo fac)
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4. Target relaxation

4. Target relaxation

Implantation of projectiles and relocation or sputtering of recoils caused by bombard-
ment produce vacancies and additional atoms in the target. Therefore the cell volume
is changed and the target is allowed to relax.

SDTrimSP

In the 1D model, the layers can swell and shrink. A new target thickness znew can be
calculated. The starting point of the x-axis is removed on the surface. Fig. 7 shows
the simple relaxation of a 1D-target with three layers (d1, d2, d3), which swell (+) or
shrink (-). The thickness of the whole target is the sum of all layer-thickness. The origin
of the coordinate system is moved to the new surface.

surface

d1(−)

d2(−)

d3(+)

❄

x

✲
relaxation

surface
d1

d2

d3❄

x

Figure 7: Relaxation of 1D-target with three layers (d1, d2, d3)

SDTrimSP-2D

The relaxation method used in 1D is not suitable for the 2D case. Therefore, a new
concept of relaxation had to be found:

The dynamic relaxation of the target is acting on the volumes. Particles are transported
into cells in the neighborhood. The assumption is that the cells are squares and the
increase or decrease of their volumes are the sum of the transfers from all directions. the
change of volume ∆Vc is given and and can be splitted in Vl, Vr, Vt and Vb. An example
of a volume change is given in Fig. 8 with the expansion of a cell.

The additional volume can be calculated accordingly:

∆Vc = Vl + Vr + Vt + Vb (r...right, l...left, t...top, b...bottom)

∆Vc = (dz · dl + dz · dl + dx · dl + dx · dl) · dy
∆Vc = dl · (2 · dz + 2 · dx) · dy
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VcVl Vr

Vt

Vb

✲✛ dx

✻

❄

dz

✲✛dl ✲✛dl

✻

❄
dl

✻

❄
dl

Figure 8: The expansion of the volume

Under the assumption of an equally expanding cell towards the four surfaces:

Vl/r = dl · dz · dy (4.2)

Vt/b = dl · dx · dy,

it is possible to eliminate dl and calculate the volume changes:

Vl/r = ∆Vc ·
dz

2(dz + dx)
(4.3)

Vt/b = ∆Vc ·
dx

2(dz + dx)
.

To get a consistent treatment of the target, volume changes have to be converted into
’fluxes’. At the beginning of a fluence step the volume of every cell is smaller/greater
(active) or equal (passive cell) to the grid cell size and therefore the divergence of the
fluxes between cells is zero.

∇ · ~F = 0

After bombardement of the target, there might exist defects (sinks) or particles were
moved, respectively implanted (sources). Thus, the target is no longer divergence-free.
The additional flux is proportional to the volume change.

∇ · ~F = Q = k ·∆V k...dimension-factor

The relaxation process now has the task to eliminate sources and sinks to restore a
divergence-free target.

∆V (τ → ∞) = 0
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4. Target relaxation

The elimination of sources and sinks and therefore the calculation of fluxes is carried out
by a diffusion process with a pseudo relaxation-time τ ′. The volume fluxes are calculated
in the subroutine ’flux vol’.

∂V

∂τ ′ =
∂D · ∂V

∂x

∂x
+

∂D · ∂V
∂y

∂y
+

∂D · ∂V
∂z

∂z

If the target is two dimensional (like in SDTrimSP-2D) the equation has only two terms:

∂V

∂τ ′ =
∂D · ∂V

∂x

∂x
+

∂D · ∂V
∂z

∂z
(4.4)

The finite-difference form is upstream in pseudo-time and centered in space:

∆V

∆τ ′ =
Di+1/2 · (Vi+1 − Vi)−Di−1/2 · (Vi − Vi−1)

∆x2

+
Dk+1/2 · (Vk+1 − Vk)−Dk−1/2 · (Vk − Vk−1)

∆z2

with:

∆V (τ ′ = 0)) = ∆Vc (initial condition, after bombardment)

∆V (τ ′ → ∞) = 0 (end condition, after relaxation)

If ∆x = ∆z and τ = τ ′/∆x2 then:

∆V

∆τ
= Di+1/2 · Vi+1 −Di+1/2 · Vi −Di−1/2 · Vi +Di−1/2 · Vi−1

+ Dk+1/2 · Vk+1 −Dk+1/2 · Vk −Dk−1/2 · Vk +Dk−1/2 · Vk−1

The reduction of tension (or ∆Vc) of the target takes place mainly in the direction of
the surface. It is possible to control this anisotropy with different diffusion-coefficients
or the weight-factors wig (see capter. 6). Replacing the Volume V by Vl, Vr, Vt, Vb and
the diffusion-coefficient D by wigl, wigr, wigt, wigb one gets:

∆V

∆τ
= wigl,i+1 · Vl,i+1 − wigr,i · Vr,i − wigl,i · Vl,i + wigr,i−1 · Vr,i−1

+ wigb,k+1 · Vb,k+1 − wigt,k · Vt,k − wigb,k · Vb,k + wigt,k−1 · Vt,k−1
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All terms of the finite-difference equation can be written in a flux-form:

Vτ+1,i − Vτ,i

∆τ
= Fl,i+1 − Fr,i − Fl,i + Fr,i−1 + Fb,k+1 − Ft,k − Fb,k + Ft,k−1

Here, F...volume-flux, r...right, l...left, t...top, b...bottom.

Finite-difference equation for a cell with number CNr=0 according to Fig. 9 is:

V0,τ+1 = V0,τ + (F2,l − F0,r + F1,r − F0,l + F4,b − F0,t + F3,t − F0,b) ·∆τ (4.5)

With help of equations 4.3 the fluxes are:

F0,l = ∆V0,τ ·
dz0

2(dz0 + dx0)
· wigl,0

F0,r = ∆V0,τ ·
dz0

2(dz0 + dx0)
· wigr,0

F0,t = ∆V0,τ ·
dx0

2(dz0 + dx0)
· wigt,0

F0,b = ∆V0,τ ·
dx0

2(dz0 + dx0)
· wigb,0

If the target is periodical in x-direction cells on the left side of the target are directly
connected to their counterparts on the right side.

The solution of equations 4.4 and 4.5 are the transport fluxes (F) represented as volumes.
If the solution is stationary, a full relaxation of the target is achieved. This is calculated
in the subroutine ’flux vol’.

∆V (τ → ∞) = 0

Fright =
∞
∑

τ=0

(F2,l − F0,r) (4.6)

Fleft =
∞
∑

τ=0

(F1,r − F0,l) (4.7)

Ftop =
∞
∑

τ=0

(F4,b − F0,t) (4.8)

Fbottom =
∞
∑

τ=0

(F3,t − F0,b) (4.9)

According to volume-flux in x and z directions the particle transport is calculated to the
neighbour cells.
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5. Change of density and target fraction in a cell

CNr = 4

❄F4,b

CNr = 1 ✲F1,r
CNr = 0✛F0,l ✲F0,r

✻F0,t

❄F0,b

CNr = 2✛F2,l

CNr = 3

✻F3,t

Figure 9: Volume-flux from and to a cell with cell-number CNr=0

5. Change of density and target fraction in a cell

In almost all simulations exist more than one specie. Thus, density and atomic fraction
in the target and the single cells have to be taken into account. Especially the relaxation
process has to consider the physical limits.

The number of particles, which originate from the neighboring cells (m) is

Nin(j) =
∑

m

Fin(m)

V (m) + dVc(m)
·N2(m, j) j...species of atoms,

while the incoming volume is

dVin =
∑

m

Fin(m).
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The Volume of a passive cell in the target is constant and independent of flux. The
number of particles in the cell is:

N3(j) = Nin(j) +
(Vc − dVin)

Vc + dVc
·N2(j).

The number of particles in the active cell (surface-cell) and its additional volume is:

N3(j) = Nin(j) +
(Vc − dVin)

Vc + dVc
·N2(j) +

dVadd

Vc + dVc
·N2(j)

dVadd =
∑

ob

Fout(ob) ob...f lux over open boundary

Vc

N

̺

Vc +∆Vc

N ′ = N +∆N

̺′

dVin Vc − dVin

Nin N ′ Vc−dVin

V+dVc

̺in ̺′

✻Fout

✲
Fout

✲
Fin

❄
Fout

a) b) c)

V

N

̺

Vc +∆Vc

N ′ = N +∆N

̺′

dVin Vc − dVin + dVadd

Nin N ′ Vc−dVin+dVadd

V+dVc

̺in ̺′

✻Fout

✲
Fin

❄
Fout

d) e) f)

Figure 10: Parameters of a passive cell a) before bombardment, b) after collision
and c) after relaxation, V(a) = V(c) and of an active cell with right open
boundary d) before bombardment e) after collision and f) after relaxation,
V(d) < V(f).
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6. Determination of the anisotropy weight factor

The new mean atomic density in each cell is therefore:

1

̺new
=

n
∑

k=1

qu(k)

̺0(k)

with composition

qu(j) = N3(j)/
ncp
∑

k=1

(N3(k)) j...species of atoms k...number of all species.

6. Determination of the anisotropy weight factor

The relaxation is strongly depending on the used weighting scheme, which will be de-
scribed in this section.

First step is a categorization of all cells in terms of their distance to the surface. Different
levels are introduced, where the surface cells get the value one. The next ’layer’ of cells
connected to those surface cells, get the value two and so on. A smaller level corresponds
to a cell closer to the surface. Figure 11 shows the procedure for an example target.

1 1 2 2 3 3 2 1 1 1

1 1 2 2 1

1 1

i4

i0

i3

i1 i2

1 2 3 3 4 4 3 2 2 1

1 2 3 4 5 5 4 3 2 1

Figure 11: Determine levels for cells in the target.
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Once the level of all cells are known, different rules for weighting factors can be applied.
The weighting of the flux-connections, wig, between neighbour cells is depending on the
level of the cells (see Fig. 11 and Fig. 12). If the level is smaller than the level of the
neighbour cell then the weighting is 0.5, e.g. between cell i0 and i3. Are the levels equal
than the weighting is 1, e.g. between cell i0 and i2. Is it greater then the value is 1. as
well.

Only the surface cells get a special weighting. The weighting is 0.25 for the open bound-
ary (no neighbour cell) and the weighting for the opposite side of the open boundary is
0.375. This choice produces more stable numerical solutions.

i4

❄
wig = 0.5

i1 ✲wig = 0.5
i0✛wig = 1 ✲wig = 1

✻wig = 1

❄
wig = 0.5

i2✛wig = 1

i3

✻
wig = 1

Figure 12: Determine the anisotropy weight factors wig for cell i0
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6. Determination of the anisotropy weight factor

The difference between the solutions with an isotropic and anisotropic weighting scheme
is small for one expanded cell and for one fluence step, but important for the whole target.
This is caused due to non-local effects of the relaxation process across neighbours. In
contradiction to the Eckstein ansatz in 1D the swelling happens not only perpendicular
to the surface, but also to the sides (’smearing’).
To show the influence of the weighting scheme on the simulation a silicon target was
prepared (see Fig. 13) and bombarded with 5 keV Argon atoms under normal incidence.

Figure 13: SEM images of a cross-section of initial state and model surface (red)

Fig. 14 shows simulation of this surface without (black) and with weighting (red line).
A good agreement is achieved only with the use of anisotropic relaxation.

Figure 14: Comparison of calculated surface without (black) and with weighting (red)
with experiment [6] 6 keV Ar on Si normal incident
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7. Comparison of results from SDtrimSP and SDTrimSP-2D

In case of a static calculation (no change of target) a two dimensional target and its
resolution are irrelevant, unless there are existing profiles in x and z directions. Due to
possibility of running SDTrimSP-2D in a one dimensional mode direct comparisons with
SDTrimSP were performed. A first dynamical test is to simulate a 1-D target, which is
shown in Fig. 15.

Figure 15: Geometry of one dimensional target in the 2D-program, according to
SDTrimSP

The target consist of Ta2O5 and was bombarded with 1000 eV He without implantation
of He. Fig. 16 shows the surface elevations, the depth profiles, the sputtering yields and
the atomic fraction at surface for SDTrimSP and SDTrimSP-2D. The differences between
the results are very small.

Figure 16: 1000 eV He on Ta2O5 , Comparison of results from SDTrimSP and from
SDTrimSP-2D (blue) 19



8. Two-dimensional examples with SDTrimSP-2D

Another dynamical testcase is the bombardment of silicon target with 2000 eV Xe. In
this simulation, Xe is implanted and the damage-driven-diffusion is used to simulate the
outgasing process of Xe. The comparison of the results from simulations with SDTrimSP
and SDTrimSP-2D shows Fig. 17. Again, the agreement is very good.

Figure 17: 2000 eV Xe on Si, Comparison of results from SDTrimSP-2D and from
SDTrimSP (blue)

8. Two-dimensional examples with SDTrimSP-2D

The new capabilities of SDTrimSP-2D are shown in this section for different examples.

8.1. 5000 eV Xe on Si

One example is the bombarding of a silicon-target with xenon. The thickness of cells is

∆z = 10 Å= 1 nm. The energy of the beam is 5000 eV , the fluence is 2.0 atoms/Å
2
and

the cuttoff-energy is 1.0 eV .

The decrease of surface (sputter depth) in the model SDTrimSP is:

SD1D = 60 Å (8.10)
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8.1. 5000 eV Xe on Si

The 2-D-Model in case of 1-D-simulation (∆x,∆y >> ∆z ), see Fig. 15 and Fig. 18, we
get a decrease of the surface:

SD2D = 60 Å (8.11)

Figure 18: The target simulation with SDTrimSP-2D in case of 1-D-structure

The change of target in case of a 2-D simulation (∆y >> ∆x,∆z ) with different beam
widths are shown in Fig. 19.
The decrease of surface or maximum sputtered depth (SD) in the center of the beam
x = 0, y = 0 are listed for various beam widths in Tab. 1. In the case of very small
width of the beam the calculated depth of material loss is greater, than in the cases with
broader beams. The simulation with a periodical beam (indefinitely) produce the same
results as the 1-D calculation.

nr. ∆x of beam maximum sputtered depth (SD)

1 50 Å 76 Å
2 100 Å 79 Å
3 200 Å 72 Å
4 400 Å 66 Å
5 indefinitely 60 Å
6 1-D-layers 60 Å

Table 1: Maximum of sputtered depth in the center of beam
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8. Two-dimensional examples with SDTrimSP-2D

Figure 19: The target simulation ∆xbeam = 50 Å and ∆xbeam = 200 Å
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8.2. 6000 eV Ar on Si target with structure

8.2. 6000 eV Ar on Si target with structure

The structure of the used target (pitch grating) is shown in Fig. 20.

Figure 20: Structure of pitch grating and direction of normal incident (a)

Fig. 13 shows the cross-section at the beginning of bombardments. The nano-structured
specimen is fabricated on a Si wafer with an intermediate Ta layer with thickness of 650
nm. The Ta layer is used as a reference marker to allow quantitative measurements of
the Si layer thick. With increasing fluence the target shrinks. The agreement of calcu-
lated surface (red line) after bombardment with the experiment is very good, Fig. 21
and 22 a-b.

Figure 21: Comparison of calculated surface (red) with experiment from [6] of 6 keV Ar
on Si normal incident at fluence 20 · 1020 atoms/m2
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8. Two-dimensional examples with SDTrimSP-2D

(a) (b)

(c) (d)

Figure 22: Comparison of calculated surface (red) with experiment from [6] of 6 keV Ar
on Si.

The next experiment is the bombardment of the same target at an incident angle α = 42◦,
Fig. 22 c and 22 d. The agreement of calculated surface (red line) with the experiment
is also very good.
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8.3. 6000 eV C on Si target with structure

8.3. 6000 eV C on Si target with structure

The structure of the used target (pitch grating) is the same as in Section 8.2 and in
Fig. 20. If a silicon-target is bombarded with carbon, material is sputtered and removed.
Fig. 23 shows the comparison of simulated surface with the experiment for a fluence
of 85 · 1020 atoms/m2. The agreement of the calculated surface (red line) with the
experiment is very good.
The comparisons of experimental data and simulation of areal density are shown in
Fig. 24. The areal density of C atoms is growing due to the implantation. The areal
density of Si is decreased due to to sputtering.

Figure 23: Comparison of calculated surface (red) with experiment [8] of 6 keV C on Si
normal incident at fluence 85 · 1020 atoms/m2

Figure 24: Comparison of the experimentally measured [9] and simulated fluence depen-
dent variation of Si and C areal density normal angle of incidence
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8. Two-dimensional examples with SDTrimSP-2D

The fluence dependent deposition of carbon is shown in Fig. 25. The simulation shows
the penetration-depth of carbon. At the end of the calculation the surface is completely
covered with carbon.

Figure 25: Simulated fluence dependent deposition of Carbon at 6 keV C on Si target
normal angle of incidence
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8.4. Influence of resolution

8.4. Influence of resolution

If the grid resolution of a target with inclined surface is insufficient the value of the
sputter yield is more and more close to the value of a non-inclined surface, Fig. 27. The
inclination of the surface is γ . The size of the grid should be much smaller than the
extension of the trajectories, see Fig. 26.

(a) (b)

Figure 26: Trajectories at inclined plane of γ = 45◦ (dash line) with a grid resolution (a)
dx=dz=100 Åand (b) dx=dz=10 Å.

Figure 27: Sputter Yield of Si dependent on angle of incidence α at different grid reso-
lutions
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8. Two-dimensional examples with SDTrimSP-2D

8.5. 5000 eV W on C-target with incidence angle of α=30◦

Another interesting case is the bombardment with an incident angle greater than zero,
like the bombardment of C by W with an incident angle of α = 30◦. The fluence
dependent deposition of tungsten and the appearance of a hole is shown in Fig. 28.

Figure 28: Simulated fluence dependent deposition of tungsten at 5 keV W on C target
for an incident angle of α = 30◦

28



References

References

[1] W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer Series in
Material Science, Vol. 10, Springer Berlin, Heidelberg 1991

[2] W. Moeller,W. Eckstein, TRIDYN-Binary Collision, IPP 9/64, 1988

[3] W. Moeller,W. Eckstein,Tridyn-fzr-2001, 2001

[4] H. Schlager,W. Eckstein,The scattering Integrals, IPP 9/69, 1991

[5] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP Version 5.0 IPP
Report 12/8, Garching, (2011)

[6] I. Bizyukov, A. Mutzke, R. Schneider, J. Davis, Evolution of the 2D surface structure

of a silicon pitch grating under argon ion bombardment: experiment and modeling,
Nucl. Instrum. Meth. vol.B 268, pp. 2631-2638, 2010

[7] I. Bizyukov, A. Mutzke, R. Schneider, A.M. Gigler , K. Krieger, Morphology and

changes of elemental surface composition of tungsten bombarded with carbon ions,
Nucl. Instrum. Meth. vol.B 266, pp. 1979-1986, 2008

[8] A. Mutzke, I. Bizyukov, R. Schneider, J. Davis, Nano-scale modification of 2D

surface structures exposed to 6 keV carbon ions: Experiment and modeling , Nucl.
Instrum. Meth. vol.B 269 pp. 582589,(2011)

[9] A. Mutzke, I. Bizyukov, H. Langhuth , M. Mayer, K. Krieger, R. Schneider , Study
of interaction of C+ ion beam with a Si pitch grating on a macro-scale level , Nucl.
Instrum. Meth. vol.B 293 pp.1115 (2012)

29



A. Units of physics terms in the code

A. Units of physics terms in the code

name symbol unit

mean free path length lm Å= 10−10m
random number Rrandom −
impact parameter Pimpact Å= 10−10m
number of atoms N −

number of projectiles nr −
fluence flc atom/Å

2

geometry of cell ∆x,∆y,∆z Å
pseudo time τ s

beam area Aflc Å
2

volume V Å
3
= 10−30m3

volume-change ∆V Å
3

atomic fraction qu −
length L Å = 10−10m

density ̺ g/Å
3
= g/10−30m3

atomic density ̺0 atoms/Å
3

energy E eV

Table 2: Units of physics terms in the code
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B. Search algorithm of local cell

The mapping of particles to their corresponding cells is essential, hence the algorithms
used in SDTrimSP and SDTrimSP-2D are described in the following section.

SDTrimSP

The search algorithm of the actual layer in SDTrimSP is very simple and sketched in
Fig. 29. The x-coordinate (xp) of every particle is known, so that a simple comparision
is possible.

The particle is outside the target if xp is smaller than −drefraction. It is part of the
refraction layer if xp < 0 and xp > −drefraction is true. If xp > 0 and xp < −d1 than the
particle is in the first layer and so on.

x = −drefraction)

x = 0 (surface)

x = d1

x = d1 + d2

d1

d2

d3

❄

x

Figure 29: Depth geometry of 1D-target with three layers (d1, d2, d3)

SDTrimSP-2D

The search algorithm of the actual cell in SDTrimSP-2D, in which the particle exists
or moves, is computed in the subroutine ’xyz in cel’. A particle can be inside a cell
(black line) but also inside of the refraction-thick (red dash line), due to a planar surface
potential, Fig. 30. In all other cases it is outside of the target. The x- and z-coordinates
of particle (xp, zp) and the coordinates of each mesh (xi, zk) are known.

The search algorithm can be divided into different steps or cases, that are shown (Fig. 30)
and in the following:
In most cases, it is known in which cell the particle was located before it moves (Nr-
cell 6= 0). Hence, case 1 is the trivial test if the particle is still in the initial cell.

If the cell number is not known or the test of case 1 is negative, the mesh-number is deter-
mined due to particles coordinates in x and z direction (xi−1 < xp < xi, zk−1 < zp < zk).
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B. Search algorithm of local cell

Exist a cell in this mesh (index-cell 6= 0) it is checked whether the particle is in this cell
(case 2) or inside the refraction-zone (case 3).

If this test is also negative (no cell inside the mesh, index-cell = 0) then all cells are
checked in the neighboring area. The cases (4-11) are top, bottom, left, right, top-left,
top-right, bottom-left and bottom-right. It is possible that the particle is inside of the
refraction-zone of other cells.

Figure 30: Cases of location of a particle in program. Red dash line is the
refraction-zone at surface, due to a planar surface potential
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C. Geometry of a binary collision

Fig. 31 shows the points P0, P1 and P3 and T1 and T2 where computing takes place in
the programs ’projectile’ and ’recoil’.

Figure 31: Trajectories of the projectiles and recoil particle in the laboratory system
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C. Geometry of a binary collision

C.1. Gaussian distribution of incidence angle

Input values are case alpha=5, alpha0 and dalpha0. The polar angle alpha0 (α0) has a
range of [0...90◦]. The azimuthal angle ϕazi = 0◦/180◦.

mean: α0 = alpha0 =
1

n
·
∑

α

standard deviation: ∆α = dalpha0 =
1

n− 1
·
∑

(α− α0)

frequency function: p =
1√

2 ·Π∆α2
· e

−(α−α0)
2

2∆α2

Figure 32: Gauss frequency distribution (p ·
√
2 ·Π∆α2) of polar angles

C.2. Gaussian distribution of incidence energy

Input values are case e0=5, e0 beam and de0 beam. The beam energy e0 beam (e0)has
a range of [1eV...100MeV ].

mean: e0 = e0 beam =
1

n
·
∑

e

standard deviation: ∆e = de0 beam =
1

n− 1
·
∑

(e− e0)

frequency function: p =
1√

2 ·Π∆e2
· e

−(e−e0)
2

2∆e2

Figure 33: Gauss frequency distribution (p ·
√
2 ·Π∆e2) of energy (case 6)
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D. Global parameters

parameter value description program

ncpm 8 max. number of species param.F90
pemax 256 max. number of cores for parallelization work.F90
ntqmax 1000000 memory request limit for coll. cascades default.F90

Table 3: Global parameters (Values are set in the program)

E. Input variables in ’tri.inp’

E.1. Necessary input variables in ’tri.inp’

The sequence of input values in the input file is arbitrary (namelist), Tab. 4 -11

variable description

alpha0(ncp) angle of incidence (degree) of ncp species in case alpha=0,5

e0(ncp) energies (eV) of projectiles (qubeam > 0.) for case e0=0,1,4
kT=ttemp · boltzm [eV] (e0 beam < 0) of projectiles for case e0=2,3
kT=e0 beam [eV] (e0 beam(> 0) of projectiles for case e0=2,3

flc incident fluence (1016 atoms/cm2 or atoms/Å
2
)

case geo flag of geometry and input surface
= 10 : one dimensional
= 20 : two dimensional, periodic, without stretch
= 21 : two dimensional, periodic, without profile (smooth surface)
= 23 : two dimensional, periodic, with surface profile in rauh.inp,

left: x=0
= 24 : two dimensional, periodic, with surface profile in rauh.inp

left: x=0, left values =right values is set in program
= 25 : two dimensional, periodic, with surface profile in rauh.inp,

centre: x=0
= 27 : two dimensional, periodic, with surface profile sin(x),

centre: x=0

Table 4: Necessary input variables (no default values)
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E. Input variables in ’tri.inp’

variable description

ipot interaction potential: = 1 : KrC
= 2 : Moliere
= 3 : ZBL
= 4 : Na-Ya
= 5 : Si-Si
= 6 : power

isbv surface binding model, determines the composition dependent sur-
face binding energy sbv(ncp,ncp) from the elemental surface binding
energies e surfb(ncp) taken from table1
= 1 : sbv(ip,jp)=e surfb(jp) for ip=jp
= 2 : sbv(ip,jp)=e surfb(jp) for all ip, jp
= 3 : sbv(ip,jp)=0., if e surfb(ip)=0 or e surfb(jp)=0

sbv(ip,jp)=0.5*(e surfb(ip)+e surfb(jp))
= 4 : sbv(ip,jp)=f(e surfb,qu,deltahf) for solid/solid compound
= 5 : sbv(ip,jp)=f(e surfb,qu,deltahf,deltahd) solid/gas compound

ncp number of species (projectiles + target species)

maxhist number of histories (projectiles)

qu beam(ncp) projectile atomic fractions (in incident beam) of ncp species,
qu beam > 0. , Note: sum(qubeam(1:ncp))=1
qu beam ≤ 1. for projectiles, qu beam = 0. for target atoms

qu tar(ncp) initial target atomic fractions of ncp species in case of homogenous
initial composition (iq0 = 0)

symbol(ncp) ncp chemical symbols of elements according to table1
(special symbol: ’H’,’D’,’T’,’He3’,’He’,’C g’, ’C f’,’C d’)

two comp symbol of two-component target according to table.compound
(e.g. two comp =’Ta2O5’)
Note: only selected compounds in table.compound

Table 5: Necessary input variables (no default values)
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E.2. Optional input variables in ’tri.inp’

E.2. Optional input variables in ’tri.inp’

These values have default values (see default init.txt). If values different from the default
values are needed, then these values have to be given explicitly in the input file.

variable default
value

description

angleinp ’./’ directory of inputfile ’angle.inp’ (see also: layerinp, tableinp,
energyinp)

case alpha 0 flag for the choice of the angle of incidence
= 0 : angle of incidence (degree) counted from the surface

normal (polar angle) is fixed
alpha0 > 0: αpol = +alpha0, ϕazi = 0◦

alpha0 < 0: αpol = −alpha0, ϕazi = 180◦

= 1 : random distribution of angles
αpol = 0...alpha0, ϕazi = 0...360◦

= 2 : cosine distribution of angles of incidence
αpol = 0...90◦ ,max: by 45◦ , ϕazi = 0...360◦

= 3 : cosine distribution of angles of incidence
αpol = 0...90◦ ,max: by 0◦ , ϕazi = 0...360◦

= 4 : input of a given incident angular distribution from
file angle.inp ( ϕazi = 0◦)

= 5 : polar angle (αpol) has a gaussian distribution
ϕazi = 0◦/180◦)
input: α0 = alpha0 and ∆α = dalpha0

case e0 0 flag for the choice of the incident energy
= 0 : fixed incident energies(eV) of projectiles (qubeam>0)
= 1 : input of a given energy distribution from file energy.inp
= 2 : temperature (eV) of a Maxwellian velocity distribution

kT=ttemp · boltzm [eV] (e0 beam < 0) of projectiles
kT=e0 beam [eV] (e0 beam(> 0) of projectiles

= 3 : temperature (eV) of a Maxwellian energy distribution
kT=ttemp · boltzm [eV] (e0 beam < 0) of projectiles
kT=e0 beam [eV] (e0 beam(> 0) of projectiles

= 5 : energy has a gaussian distribution
input: e0 = e0 beam and ∆e = de0 beam

Table 6: Optional input variables with default values
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E. Input variables in ’tri.inp’

variable default
value

description

case start 3 input of start position of projectiles ( x start, y start z start)
= 1 : x start, y start and z start are given in tri.inp

z(start) = cel(x start, y start,z start) +thick deflec
= 2 : x start, y start and z0 rel are given in tri.inp

z(start)=z(surface)+z0 re
= 3 : x start, y start and z start are constant and

given in tri.inp
= 4 : y start and z start are constant and given in tri.inp

x start and dx start are in tri.inp
x= x start-0.5*dx start+random*dx start

= 5 : program intern x-distribution
charge(ncp) 0 charge of species if case e0=2,3 and sheath>0 (plasma)

≥ 1. for qubeam>0 (projectiles)
= 0. for qubeam=0 (target atoms)

dalpha0(ncp) 1 ∆α [degree] for gaussian distribution, see case alpha =5
de0 beam(ncp) 0 ∆e [eV] for gauss distribution, see case e0=5
deltahd(ncp) heat of dissociation (eV) of a molecular target

default from table1
deltahf table heat of formation (eV) of a molecular target

default from table1

diff koeff1(ncp) 1.0 transportcoeffiecient if loutgas true [Å
3
/ion]

(see also: loutgas)

diff koeff2(ncp) 1.0 diffusionskoeffcient if loutgas true [Å
4
/ion]

(see also: loutgas)

dns 0( ncp) table atomic density (atoms/Å
3
) of ncp elements;

default from table1
dx start 0. X-Width of the beam [Å]
e bulkb(ncp) 0. bulk binding energy; if e bulkb>0., e bulk has to be subtracted

from the surface binding energy e surfb
e cutoff(ncp) table cutoff energy (eV) of ncp species; defaults from table1

(0.05 eV for noble gases; 1 eV for H, D, T;
e surf - 0.05 eV for selfbombardment)

e displ(ncp) table displacement energy (eV); default from table1
(if in table1 e displ=0 then e displ=15)

e surfb(ncp) table surface binding energy (eV) (heat of sublimation);
energyinp ’./’ directory of inputfile ’energy.inp’

(see also: layerinp, tableinp, angleinp)

flc flux 1.0 flux [atoms/(Å
2
s)], only to calculate time or fluence

flc time -1 time [s], only to calculate flux or fluence

Table 7: Optional input variables with default values (continue)
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E.2. Optional input variables in ’tri.inp’

variable default
value

description

geo x(2) 500 maximal width of target to right without(1) and with(2) cell-
expansion, unit =[Å]
range of target=[-geo x(2)..-geo x(1)..geo x(1)..geo x(2)]

geo z(2) 500 maximal depth of target without (1) and with (2) cell-
expansion, unit=[Å]
range of depht=[0..geo z(1)..geo z(2)]

geo dx 10 cell-width in X, [Å]
geo dz 10 cell-width in Z, [Å]
geo tau 1.0 geo tau=∆τ relaxations coefficient, [s/Å2]
ihist out -1 control output, determines the outputfiles: E0 31 target.dat,

E0 34 moments.dat, partic*.dat, trajec*.dat and restart file
= -1 : output after each fluence step of maxhist/100,

100 fluence steps
= 0 : output only after the last fluence step
> 0 : output after each ihist out’th fluence step and last

step
iintegral 0 integration method

= 0 : MAGIC, only valid for KrC, ZBL, Moliere
not recommended

= 1 : Gauss-Mehler quadrature, ipivot ≥ 8
= 2 : Gauss-Legendre quadrature, ipivot ≤ 16

recommended
inel0(ncp) 3 inelastic loss model

= 1 : Lindhard-Scharff;

nessary condition: E < 25 · Z4/3 ·M (in keV)
where E, Z, M are the energy, the atomic number
and the atomic mass of the moving particle

= 2 : Oen-Robinson;

nessary condition:E < 25 · Z4/3 ·M (in keV)
= 3 : equipartition of 1 and 2
= 4 : high energy hydrogen (H,D,T) (energy > 25 keV)

values from table3
= 5 : high energy helium (He3,He) (energy > 100 keV)

values from table4

Table 8: Optional input variables with default values (continue)
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E. Input variables in ’tri.inp’

variable default
value

description

ioutput hist(6) 10 number of traced trajectories for:
stopped, backscattered and transmitted projectiles,
stopped, backsputtered, transmission sputtered recoils
(see also: ltraj p, ltraj r)

ioutput part(6) 10 number of traced particles for:
stopped, backscattered and transmitted projectiles,
stopped, backsputtered, transmission sputtered recoils
(see also: lparticle p, lparticle r)

ipivot 16 number of pivots in the Gauss-Mehler and Gauss-Legendre in-
tegration, the minimum number is 4 (larger numbers increase
the computing time)

iq0 0 initial composition flag
< 0 : initial depth dependent composition taken from file

layer.inp
= 0 : initial composition homogeneous, one layer with

constant depth intervals
irand 1 random seed
irc0 -1 flag for subthreshold recoil atoms

< 0 : subthreshold recoil atoms free
≥ 0 : subthreshold atoms bound

isot(ncp) 0 flag for isotope mass
= 0 : natural isotope mixture (mass from table1)
= 1 : isotope masses and natural abundances from

table2
(valid for projectiles as well as for target species)

i two comp 1 method to determine the densities dns0(:) from the compound
density in a two-component target (table.compound)
=1 : dns0 for the first target species is set equal to the

elemental density; nessary if the second element is
a gas (e.g. Ta2O5)

=2 : dns0 for the second target species is set equal to
the elemental density

=3 : iterative determination of both dns0(:); recom-
mended if the elemental densities are different

iwc=2 2 number of ring cylinders for weak simultaneous collisions for
projectiles; for high energies (MeV H or He) iwc can be reduced
to 1 or 0 to reduce computing time

iwcr=2 2 number of ring cylinders for weak simultaneous collisions for
recoils

Table 9: Optional input variables with default values (continue)
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E.2. Optional input variables in ’tri.inp’

variable default
value

description

layerinp ’./’ directory of inputfile ’layer.inp’
(see also: tableinp, angleinp, energyinp)

lchem ch .false. calculation with chemical erosion H on C, D on C
lmatrices .false. .true. : output of matrices, if idrel /= 0

.false. : no matrix output
loutgas .false. calculation with outgasing transport and diffusion

(see also diff koeff1,diff koeff2)
lparticle p .false. .true. : output of projectile information

.false. : no output of projectile information
(see also: ioutput part)

lparticle r .false. .true. : output of recoil information
.false. : no output of recoil information
(see also: ioutput part)

ltraj p .false. .true. : output of projectile trajectories
.false. : no output of projectile trajectories
(see also: numb hist, ioutput hist)

ltraj r .false. .true. : output of recoil trajectories
.false. : no output of recoil trajectories
(see also: numb hist, ioutput hist)

l write restart .false. .true. : output of restart-file
nm mol -1 =-1 : not a molecular target

> 1 : number of atoms in a two-component molecule
nr pproj 10 number of projectiles between two target updates (idrel = 0)
numb hist 20 number of traced trajectories of projectiles and recoils
qumax(ncp) 1. maximum atomic fractions in the target for ncp species, if

idrel=0
rhom mol atomic density of a two-component target; default from ta-

ble.compound [g/cm3]
sfin 0. = 0 : no inelastic energy loss outside the

target surface (x = 0.)
= 1 : inelastic energy loss outside the target surface

(−su > x > 0.)
shth 0. = 0 : no sheath potential

> 0 : sheath potential (eV), usually = 3 · |e0|· charge,
only if case e0=2,3 (Maxwellian distribution,
plasma)

tableinp ’../tables’ directory of inputfile for tables
(see also: layerinp, angleinp, energyinp)

Table 10: Optional input variables with default values (continue)
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E. Input variables in ’tri.inp’

variable default
value

description

tar dynamic true mode of simulation
= true : full dynamic calculation (like TRIDYN)
= false : suppression of dynamic relaxation (like TRIM),

full static calculation

ttemp 0. target temperature, only of interest at high temperatures, it
reduces the surface binding energy according to a Maxwellian
energy distribution

tttt text in tri.inp

x start 0. x starting position of projectile

z start 0. z starting position of projectile

z0 rel 0. z starting position of projectile

Table 11: Optional input variables with default values (continue)
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F. Example of Inputfile ’tri.inp’ and ’layer.inp’

Inputfile ’tri.inp’ of 1D example He − > Ta2O5

1000 eV He − > Ta2O5
& TRI INP
/
tttt=’—elemements—’

ncp = 3
symbol =”He”, ”Ta”, ”O”

tttt=’—target—’
nm mol = 7
two comp =”Ta2O5”
qu tar = 0.000, 0.285714, 0.714286
qu max = 0.000, 1.000, 0.714286
inel0 = 5, 3, 3
e cutoff = 1.0 ,1.0 ,1.0

tttt=’—control—’ maxhist = 100000
ihist out = 2000
flc = 10
nr pproj = 10
tar dynamic = .true.
ipot = 1
isbv = 5
iintegral = 2
ipivot=8

tttt=’—beam—’
qu beam = 1.000, 0.000, 0.000
case e0 = 0
e0 beam = 1000, 0.00, 0.00
case alpha= 0
alpha0 = 0.000, 0.000, 0.000
case start= 3
x start = 0.
dx start= 0.
z start = 100.

tttt=’geometry: case geo = 10 ... 1-D’
case geo = 10
geo x = 500. 500.
geo z = -500. -500.
geo dx = 1000.0
geo dz = 5.0

/
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F. Example of Inputfile ’tri.inp’ and ’layer.inp’

Inputfile ’tri.inp’ of 1D example Xe − > Si

2000 eV Xe − > Si
& TRI INP
tttt=’—elemements—’

ncp = 2
symbol =”Xe”,”Si”

tttt=’—beam—’
qu beam = 1.000, 0.000
case e0 = 0
e0 beam = 2000, 0.00
case alpha= 0
alpha0 = 0.000, 0.000

tttt=’—target—’
qu tar = 0.000, 1.000
qu max = 1.000, 1.000
inel0 = 3, 3
e cutoff = 1.0 ,1.0

tttt=’—control—’
maxhist = 10000
ihist out = 100
flc = 1
nr pproj = 40
tar dynamic = .true.
ipot = 1
isbv = 1

tttt=’—beam—’
case start= 3
x start = 00.
dx start= 0.
z start = 1000.

tttt=’geometry 10 one dim’
case geo = 10
geo x = 500. 500.
geo z = -500. -500.
geo dx = 1000.0
geo dz = 5.0
loutgas = .true.

tttt=’ diff koeff’
diff koeff1 =1.7e06, 0.0
diff koeff2 = 200, 0.0

/
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Inputfile ’tri.inp’ of 2D example Xe − > Si, see Fig. 19

5000 eV Xe − > Si
& TRI INP
tttt=’—elemements—’

ncp = 2
symbol =”Xe”,”Si”

tttt=’beam’
qu beam = 1.000, 0.000
case e0 = 0
e0 beam = 5000, 0.00
case alpha= 0
alpha0 = 0.000, 0.000

tttt=’ control’
flc = 2
maxhist = 1000
ihist out = 500
nr pproj = 400
ipot = 1
isbv = 1

tttt=’target’
tar dynamic = .true.
qu tar = 0.000, 1.000
inel0 = 3 , 3
irc0=1
e cutoff= 1.0 , 1.0

tttt=’beam geometry 4... given x:x+dx*random, z start=constant’
case start= 4
x start = 5.
dx start = 50.
z start = 500.

tttt=’target 21..without profile ’
case geo = 21
geo x = 500. 500.
geo z = -500. -500.
geo dx = 10.0
geo dz = 10.0
loutgas = .true.
diff koeff1 =1.7e06, 0.0
diff koeff2 = 200, 0.0

/
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F. Example of Inputfile ’tri.inp’ and ’layer.inp’

Inputfile ’tri.inp’ of 2D example Ar − > Si, see Fig. 20 - 23

6 keV Ar − > Si
& TRI INP
tttt=’—elemements—’

ncp = 3
symbol = ”Ar”,”Si”,”Ta”

tttt=’ beam’
qu beam = 1.00, 0.00 , 0.00
case e0 = 0
e0 beam = 6000.00, 0.00, 0.00
case alpha= 0
alpha0 = 42.000, 0.000, 0.000

tttt=’control’
maxhist = 24000
ihist out = 1000
flc = 60
nr pproj = 1024
ipot = 1
isbv = 1
irc0=1

tttt=’target’
tar dynamic = .true.
inel0 = 3, 3, 3
qu tar = 0.00, 1.00, 0.00
e cutoff = 2.0 ,2.0 ,2.0

tttt=’ 0... homogen 1... initial composition.inp’
iq0=1

tttt=’ outgasing’ loutgas = .true.
diff koeff1 = 1.00e5, 0
diff koeff2 = 50 , 0

tttt=’ 4... given x:x+dx*random, z start=constant’
case start= 4
x start = 0.
dx start= 5000.
z start = 2500.

tttt=’25 with profile rauh.inp’
case geo=25
geo x = 2500., 2500.
geo z = -5000., -5000.
geo dx = 20.0
geo dz = 20.0

/
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Inputfile ’rauh.inp’ of 2D example Ar − > Si, see Fig. 20 - 23

pitch grating (x,y Values)
6
-2600.0 0000.0
-1350.0 0000.0
-1100.0 2000.0
1100.0 2000.0
1350.0 0000.0
2600.0 0000.0
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