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Abstract

We investigate theoretically the dynamics of three low-order transverse modes
in a small-area vertical cavity surface emitting laser. We demonstrate the break-
ing of axial symmetry of the transverse field distribution in such a device. In par-
ticular, we show that if the linewidth enhancement factor is sufficiently large dy-
namical regimes with broken axial symmetry can exist up to very high diffusion
coefficients ∼ 10 µm2/ns.

1 Introduction

In the last decades, vertical cavity surface emitting lasers (VCSELs) have attracted
continuous attention due to their promising applications as high power ultra-compact
coherent light sources. Unlike edge emitting lasers VCSELs can be made rather ho-
mogeneous in the transverse direction, which can lead to a complicated dynamics of
transverse modes. In the present article we consider an axially symmetric VCSEL with
relatively small aperture radius ( ∼ 2 µm). Typically, it is expected that the fundamen-
tal transverse mode dominates in the output of such a device, at least close enough
to the lasing threshold. That is, the intensity profile is axially symmetric. The appear-
ance of higher-order transverse modes can break the axial symmetry, at least in the
instantaneous field (the symmetry can be restored by time averaging of the dynamics
in certain cases). In this article we show that even in such small-aperture devices the
higher-order modes can be excited despite of the strong influence of carrier diffusion
and boundary conditions, leading to asymmetric emission from an axially symmetric
device.

Interaction between few laser modes in the presence of a spatial population grat-
ing were reported earlier for different class B laser models. In particular, in [1, 2] a
transition to antiphase pulsations of two counterpropagating waves resulting from fre-
quency detuning was demonstrated in a bidirectional class B laser. Bifurcation mech-
anisms underlying this transition were described in [3]. In [4] a solid-state class B laser
with circular aperture was considered. It was shown that even under symmetric pump
conditions the break-up of axial symmetry can take place when the pump is “broad
enough”, i.e. when the overlap integral of the pumping field with the higher-order cav-
ity modes is sufficiently large. A similar phenomenon was predicted for the off-axis
LP (linearly polarized) waves in a broad-area VCSEL in [5]. In addition, many details
of the carrier dynamics including diffusion were taken into account in more compre-
hensive VCSEL modeling approaches [6, 7, 8, 9, 10, 11]. However, the complexity
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of these models prevented the authors from systematical study of large parameter
ranges.

In the present article we study the effect of the carrier diffusion and linewidth en-
hancement factor [12] on the dynamics of three lowest-order transverse modes of
small-aperture VCSELs in a wide parameter range. We show that for sufficiently high
diffusion coefficients the fundamental mode always dominates in the laser dynamics.
The appearance of higher-order modes is, however, possible even for rather high diffu-
sion coefficients ∼ 10 µm2/ns, provided that the linewidth enhancement factor is large
enough. In general, the α-factor plays a destabilizing role in the laser dynamics lead-
ing to a destabilization of cw states, see, e.g. [2, 5]. In particular, with the increase of
this factor the range of diffusion coefficients where nontrivial dynamical regimes exist
increases.

2 The basic equations

Assuming linear polarization of laser radiation, we start from the scalar variant [5] of
the vectorial equations [13, 14] governing the spatio-temporal evolution of the field
e(r⊥, t) and of the carrier density d(r⊥, t) in a VCSEL:

ė = −κe− iΩ̂e+κ(1+ iα)dL e, (1)
ḋ = −d + j−de∗L̂ (de)+D f ∆⊥d. (2)

Here the time t is normalized to the carrier relaxation time, r⊥ = {r,φ} are radial co-
ordinates in transverse plane, κ is the cavity decay rate, α is the linewidth enhance-
ment factor and ∆⊥ = 1

r
∂
∂ r

(
r ∂

∂ r

)
+ 1

r2
∂ 2

∂φ 2 is the transverse Laplacian. The operators

Ω̂ and L̂ are defined for every transverse mode e = ψmn as Ω̂ψmn = δmnψmn and
L̂ ψmn = ψmn/(1 + δ 2

mn/γ2), where δmn is the detuning of the mode ψmn and γ is the
normalized polarization decay rate. The parameter j(r⊥, t) stands for the injection cur-
rent density and D f is the diffusion coefficient normalized to the mode diameter (see
below for the discussion of the mode shapes). We will limit our analysis to the dynam-
ics of three lowest-order transverse modes: the fundamental mode and two first order
ones. The onset of the first order modes causes the axial symmetry breaking in the
system under study. In Eqs. (1)-(2), the threshold value for the fundamental mode is
j = 1. Following Ref. [4], we substitute d = 1+n, where n is the excess of carrier den-
sity above the threshold value, into Eqs. (1)-(2), neglect higher-order nonlinear terms
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[3], and write the equations for the relevant modal amplitudes:

Ḟ0 =−κF0 +2κ(1+ iα)L0F0M0, (3)
Ḟ+ =−κF+ +κ(1+ iα)(L+F+N0 +L−F−N2), (4)
Ḟ− =−κF−+κ(1+ iα)(L−F−N0 +L+F+N∗

2 ), (5)
Ṁ0 =−M0 + jm0 −2D f 01M0 +D f 01N0−
−(2Θ0L0|F0|2 +Θ1L−|F−|2 +Θ1L+|F+|2), (6)

Ṅ0 =−N0 + jn0 −2D f 11N0 +
1
4

D f 11M0−
−(Θ1L0|F0|2 +Θ2L−|F−|2 +Θ2L+|F+|2), (7)

Ṅ2 =−N2 + jn2 −Θ2L+F+F∗−−2D f 11N2− 1
4

D f 11M0. (8)

Here F0 ≡ ψ00 exp(iδ00t) is the (complex) amplitude of the fundamental axially sym-
metric transverse mode and F± = ψ0±1 exp(iδ0±t) are the amplitudes of two first order
modes.

In Eqs (3)-(8) the variables M0 = N0000, N0 = N0101, and N2 = N010−1, describe different
harmonics of the spatial population grating in the transverse plane. Θ0 = Θ0000

0000, Θ1 =
Θ0000

0101, Θ2 = Θ0−10−1
0101 , D f i j = D f µ2

i j with µi j defined by the boundary conditions. These
quantities are given by

Nnmn1m1 =
ˆ

S
ψ∗

mnnψm1n1rdrdφ , (9)

Θm2n2m3n3
mnm1n1

=
ˆ

S
ψ∗

mnψm1n1ψ∗
m2n2

ψm3n3rdrdφ , (10)

jm0 =
ˆ

S
j|ψ00|2rdrdφ , jn0 =

ˆ

S
j|ψ01|2rdrdφ , (11)

jn2 =
ˆ

S
jψ∗

01ψ0−1rdrdφ , (12)

where integration is performed over the cross-section area of the VCSEL.

In our numerical simulations we have used the following parameter values of the VC-
SEL under consideration. The oxidation aperture with the radius R≈ 2.5 µm is placed
on the top mirror. The outer part of the cavity is defined by etching at Ret ≈ 13 µm. De-
termination of the mode shape in such a VCSEL structure is a rather complex problem
[6, 7, 12, 17, 18, 19]. The mode shape is influenced by the index step aperture, etch-
ing aperture, injection current profile, and dynamical effects such as thermal lensing.
Therefore, for the sake of generality we consider here two different sets of modes: the
Bessel modes defined by the oxidation layer and the Laguerre-Gaussian modes with
the same waist. In both cases the diffusion coefficient D f is normalized to the aper-
ture width R. For the Bessel modes we have Θ0 ≈ 0.668, Θ1 ≈ 0.456, Θ2 ≈ 0.494 . . . ,
and µi j is the ith root of the Bessel function of jth order. For the Laguerre-Gaussian
modes the coefficients of Eqs. (3)-(8) are very similar: Θ0 = Θ1 = Θ2 = 1/2. We will
show that the results are qualitatively independent of the choice of the mode shape.
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For the presentation clarity, we assume also zero detuning between the two first or-
der transverse modes in Eqs. (3)-(8) which is the case when the pumping and device
structure is axially symmetric. In addition, we assume that the spectral width of the
gain contour is larger than the detuning between the fundamental and the first-order
transverse modes and that the highest-order pump parameter jn2 is neglectable.

3 Simulations
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Figure 1: (Color online) Modal intensity timetraces obtained numerically using
Eqs. (3)-(8). R = 2.5 µm. Different panels correspond to different values of the pa-
rameters ε , D, and α . (a)-(c) D = 0, α = 0. (d)-(f) D f = 40 ns/µm2, α = 0. (g)-(i)
D = 4.0 µm2/ns, α = 3. (a),(d),(g) ε = 0.4. (b),(e),(h) ε = 1.2. (c),(f),(i) ε = 3. The fun-
damental mode is shown by the solid blue line, whereas the two first order modes are
shown by red dashed and green dot-dashed lines, respectively. The pump parameter
is jm0 = 5.9 (except (g), where jm0 = 1.7). In (g) the intensities for F+ and F− are
amplified 100 times to increase the visibility.

As it was demonstrated in [4], the dynamics of the transverse modes in a class B laser
strongly depends on the ratio ε = jm0/ jn0, i. e. on the relative “width” of the pumped
area. Our simulations show that if D f 6= 0 the fundamental mode always dominates
near the lasing threshold. Therefore, we consider here quite strong pumping 2-3 times
larger than the threshold one. In Fig. 1(a)-(c) three typical timetraces of modal inten-
sities calculated numerically for D f = 0 and α = 0 are shown. The so-called “running
wave” solution corresponding to zero amplitude of the fundamental mode, |F0|2 = 0,
and nonzero amplitude of one of the first order modes, |F−|2 or |F+|2 , see Fig. 1(a),
is stable for ε . 0.9. For ε & 2.0 the fundamental mode solution (|F0|2 > 0, |F−|2 = 0,
|F+|2 = 0) becomes stable, see Fig. 1(c). In the intermediate range of ε a stable mixed
solution with nonzero amplitudes of all three transverse modes [|F0|2 > 0 and |F−|2 > 0
or |F+|2 > 0, see Fig. 1(b)] exists.
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The timetraces shown in Fig. 1(d)-(f) correspond to a nonzero diffusion coefficient
D f = 40 µm2/ns. As one can see, typically the contribution of the fundamental mode
into the laser field increases with the diffusion coefficient. In particular, the running
wave regime is transformed into the mixed wave one [cf. Fig. 1(d) and Fig. 1(a)], and
a mixed wave regime – into the fundamental mode regime [cf. Fig. 1(e) and Fig. 1(b)].
Furthermore, due to additional damping introduced by the carrier diffusion in Eqs. (3)-
(8) the amplitude of the solution becomes smaller and starting from the same initial
condition the system approaches the cw solution much faster than in the absence of
the diffusion. This means in particular, that the carrier diffusion suppresses dynamic
instabilities. Similar behavior was reported earlier for a bidirectional class B ring laser
[1].

Figure 2: (Color online) Numerically calculated regions of different laser operation
regimes on {α,D f }-plane for jm0 = 5.9 and ε = 0.4. (a) CW vs. dynamical (DYN)
regimes. (b) Regions corresponding to different amplitudes of transverse modes. NL:
|F0|2 = 0, |F+|2 = 0, |F−|2 = 0 (non-lasing solution); FUND: |F0|2 6= 0, |F+|2 = 0, |F−|2 =
0 (fundamental mode); MW: |F0|2 6= 0, |F+|2 6= 0, |F−|2 6= 0 (mixed wave); SW: |F0|2 =
0, |F+|2 6= 0, |F−|2 6= 0 (standing wave); RW: |F0|2 = 0 and one of |F+|2 or |F−|2 is
nonzero (running wave).

In the presence of nonzero α-factor the dynamics of Eqs. (3)-(8) changes significantly.
In particular, it is well know that the cw solution becomes unstable for sufficiently large
α 6= 0 [2, 5]. This is illustrated by Fig. 1(g)-(i) which corresponds to α = 3. One can see
that well developed dynamical pulsations consisting of short peaks of either only the
fundamental mode intensity, see Fig. 1(h)-(i), or the intensities of all three transverse
modes, see Fig. 1(g).

The diagrams in Fig. 2 present the regions of different dynamical regimes of Eqs.
(3)-(8) in the plane of two parameters, namely the diffusion coefficient D f and the
linewidth enhancement factor α . In Fig. 2(a) the cw solutions (CW) and dynamical
regimes with time dependent modal intensities (DYN) are shown by different colors.
One can see that for D f . 2 µm2/ns a transition to dynamical regimes takes place for
sufficiently large values of the linewidth enhancement factor α . Regimes with different
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modal amplitudes are indicated by different colors in Fig. 2(b). As it is seen from this
figure, for 2 . D f . 20 µm2/ns a cw solution corresponding to the pure fundamental
mode is stable (see the blue region indicated FUND). At even stronger diffusion the
laser stops to lase for the chosen pump rate (see the violet region NL). In a small
region below D f ≈ 2 µm2/ns the stable solution consists of all the three transverse
modes. At even smaller diffusion coefficients D f , a “running wave” (RW) regime, which
is typically a cw solution [cf. Fig. 2(a)] corresponding to a single first order transverse
mode, is stable for sufficiently small values of the linewidth enhancement factor α . For
larger α a regime with zero fundamental mode amplitude and antiphasely oscillating
amplitudes of the two first order modes establishes. This regime is denoted as MW
(“mixed wave”) in Fig. 2(b). The existence of similar oscillations was predicted theo-
retically for a class B laser operating at three [4] and two [20] transverse modes, as
well as for other laser geometries [1, 2, 5].

In the simulations described above Bessel modes have been used. We have recal-
culated the diagrams shown in Fig. 2 for the case of Laguerre-Gaussian modes, see
discussion after Eq. (9). The resulting diagrams are very similar to those shown in
Fig. 2, with the only difference that all the colored regions are shifted as a whole to
the direction of larger diffusion. Therefore, we assume, that the behavior described
above is rather generic.

4 Conclusions

To conclude, we considered the dynamical regimes arising in a small-area index-
guided VCSEL. We showed that the symmetry breaking bifurcation predicted in [4] is
still possible in this device for the values of the diffusion coefficient up to ∼ 10 µm2/ns.
The presence of the linewidth enhancement factor in the model equations leads to the
appearance of dynamical regimes, that can involve fundamental as well as first order
transverse modes. Carrier diffusion has a tendency to increase the lasing threshold
and to stabilize CW regimes. The dynamics remains qualitatively insensitive to the
exact mode shape (Bessel vs Laguerre-Gaussian modes). This stabilizing behavior is
somewhat similar to that of the cavity solitons and their bound states in semiconductor
lasers predicted in [21, 22, 23].

A.V. and U.B. acknowledge the support of this work by the SFB787 of the DFG.
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