18 research outputs found

    Relevance of the Formation of Intermediate Non-Equilibrium Phases in YBa2Cu3O7-x Film Growth by Transient Liquid-Assisted Growth

    Get PDF
    Transient liquid-assisted growth (TLAG) is a non-equilibrium ultrafast method to grow YBa2Cu3O7–x (YBCO) superconducting films at up to 100 nm/s using chemical solution deposition. In this work, we study the formation of non-equilibrium crystalline intermediate phases prior to the growth of YBCO through TLAG. We analyze the thermal decomposition and microstructural evolution of a propionate-based fluorine-free solution used as precursor to YBCO epitaxial films. Thermal analyses (TGA, DSC), coupled with techniques to monitor the volatiles (TG-IR), were applied in situ during film pyrolysis in humid O2, while the thermal evolution of the solid residue was characterized by infrared spectroscopy and X-ray diffraction, both ex situ and in situ in synchrotron radiation sources, and by scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) cross-sectional analysis. Unexpected effects, observed during the decomposition of the ternary solution, are the formation of intermediate non-equilibrium phases: Cu2O or Cu(0) and monoclinic BaCO3. We emphasize that working with anhydrous solutions and anhydrous deposition conditions promotes the formation of the expected equilibrium phases. Finally, in situ X-ray diffraction permits monitoring the influence of the non-equilibrium monoclinic BaCO3 phase on the formation of binary oxide phases, precursors of TLAG YBCO film growth. Understanding the evolution of non-equilibrium phases is shown to be fundamental for the control of the final YBCO film’s microstructure and performance, since the latter are strongly affected by the film’s thermal history after solution deposition.This work was funded by Ministerio de Ciencia, Innovation y Universidades (RTI2018-095853-B-C21 and RTI2018-095853-B-C22) cofinanced by the European Regional Development Fund, and the EU Ultrasupertape project (ERC ADG-2014-669504). We also acknowledge the Center of Excellence Severo Ochoa (SEV-2015-0496), the Generalitat de Catalunya (2017-SGR-1519) and the COST -action NANOCOHYBRI (CA16218). In situ FTIR experiments were performed at the MIRAS beamline of the ALBA Synchrotron with the collaboration of ALBA staff. We also thank the DiffAbs beamline at SOLEIL Synchrotron facility and the beamline staff support for the in situ XRD experiments. We thank the ICMAB, INA-Zaragoza and UdG scientific services and technical staff for the support on the experiments. S.R. thanks the Universitat de Girona (UdG) for the IFUdG grant. L.S. and J.J. also acknowledge their FPU-MINECO PhD grant.Peer reviewe

    Kinetic Control of Ultrafast Transient Liquid Assisted Growth of Solution-Derived YBa2Cu3O7-x Superconducting Films

    Get PDF
    Transient liquid assisted growth (TLAG) is an ultrafast non-equilibrium growth process mainly governed by kinetic parameters, which are only accessible through fast in situ characterizations. In situ synchrotron X-ray diffraction (XRD) analysis and in situ electrical resistivity measurements are used to derive kinetic diagrams of YBa2 Cu3 O7- x (YBCO) superconducting films prepared via TLAG and to reveal the unique peculiarities of the process. In particular, diagrams for the phase evolution and the YBCO growth rates have been built for the two TLAG routes. It is shown that TLAG transient liquids can be obtained upon the melting of two barium cuprate phases (and not just one), differentiated by their copper oxidation state. This knowledge serves as a guide to determine the processing conditions to reach high performance films at high growth rates. With proper control of these kinetic parameters, films with critical current densities of 2-2.6 MA cm-2 at 77 K and growth rates between 100-2000 nm s-1 are reached. These growth rates are 1.5-3 orders of magnitude higher than those of conventional methods.The authors acknowledge the European Research Council for the ULTRASUPERTAPE project (ERC-2014-ADG-669504), IMPACT project (ERC-2019-PoC-874964) and EU COST action for CA16218 (NANOCOHYBRI). The authors also acknowledge financial support from Spanish Ministry of Science and Innovation with PID2021-127297OB-C21 and PID2021-127297OB-C22, and from Spanish Ministry of Science, Innovation and Universities through the “Severo Ochoa” Program for Centers of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S), and from the Spanish Ministry of Economy and Competitiveness with the SUMATE project (RTI2018-095853-B-C21, RTI2018-095853-B-C22, co-financed by the European Regional Development Fund, MCIU/AEI/FEDER, UE). They also thank the Catalan Government (2017-SGR-1519) and the Catalan energy network XRE4S (2018 XARDI 00002) for their support. L.S., D.G., and A.K. acknowledge financial support from Spanish Ministry of Science, Innovation and Universities through the FPI grant PRE2019-090621, PRE2018-084537, and PRE2020-091817, respectively. L.So. and J.J. acknowledge financial support from Spanish Ministry for the FPU grants. S.R. thanks the Universitat de Girona for IFUdG grant and A.Q. thanks the Spanish Ministry of Science, Innovation and Universities (“Juan de la Cierva” postdoctoral fellowship [Grant no. IJC2018-035034-I]). The authors thank the Scientific Services at ICMAB and ICN2 Electron Microscopy Division. The authors acknowledge the use of instrumentation as well as the technical advice provided by the National Facility ELECMI ICTS, node “Laboratorio de Microscopías Avanzadas” at University of Zaragoza. The authors also acknowledge SOLEIL Synchrotron for provision of synchrotron radiation facilities and are grateful for assistance while using the DiffAbs beamline.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Transient Liquid Assisted Growth of YBCO Superconducting Films : Growth Kinetics, Physical Properties and Vortex Pinning

    Get PDF
    Els superconductors d'alta temperatura (HTS) han liderat els programes d'investigació I desenvolupament durant tres dècades i actualment es troben a prop de ser integrats en aplicacions de gran escala, en forma de cintes superconductores (CCs), una arquitectura de cinta robusta i flexible que permet el creixement texturat d'aquest material fràgil. Un escull pendent per l'amplia implementació de les CCs és l'alt ratio de cost/prestació, essencialment controlat pel creixement complexa i descelerat de la capa de HTS. En aquesta tesis, vem agafar el repte de millorar el rendiment i cost dels mètodes de creixement convencionals a través del desenvolupament d'una nova tècnica de creixement que combina la deposició de solucions químiques (CSD), deposició del precursor inherentment de baix cost, amb l'alta velocitat de creixement, una aproximació de creixement de no equilibri que permet la formació d'una fase líquida transitòria (Ba-Cu-O) que condueix a la cristal·lització del producte final: Creixement Assistit per Líquid Transitori a través de CSD (TLAG-CSD). Hem utilitzat aquest procés nou per créixer capes primes de YBa2Cu3O7-d (YBCO), un material HTS basat en cuprats de inigualables prestacions sota camps magnètics aplicats i altes temperatures. Aquestes propietats tan impressionants sols es poden assolir si el compost, elèctricament anisotròpic, exhibeix una textura biaxial i conté suficients defectes per ancorar els vòrtexs, quantificacions de flux magnètic que necessiten ser immobilitzades per obtenir conducció de corrent elèctric sense pèrdues. Per tant, no tan sols pretenem la comprensió dels fonaments del procés TLAG-CSD, sinó també promoure formes de creixement epitaxial a grans velocitats, evitant les causes de degradació del corrent, i fomentant l'enriquiment d'un paisatge adequat per l'ancoratge de vòrtexs. Per afrontar aquests reptes, hem combinat varis mètodes avançats de caracterització: Hem realitzat experiments de creixement in-situ en una instal·lació de llum sincrotró per avaluar la cinètica de creixement a diferents pressions parcial i total d'oxigen, temperatura de creixement, rampa d'escalfament, gruix de la capa HTS i composició, així com l'addició de nanopartícules (NP). La combinació dels diferents experiments s'ha resumit satisfactòriament en els anomenats diagrames de fase cinètics, una representació visual dels processos fora de l'equilibri i un roadmap per la seva utilització. Les capes de YBCO epitaxial orientades segons l'eix c s'han estudiar minuciosament amb difracció de raigs-X, microscòpia electrònica de transmissió (TEM), experiments de transport elèctric a baixes temperatures i inducció magnètica per identificar les limitacions i oportunitats del procés. Això va incloure l'estudi de la microestructura del YBCO i les propietats elèctriques per evitar la reactivitat del líquid amb el substrat, la segregació de fases secundaries, a la vegada que asseguràvem l'eliminació del CO2 i el dopatge d'oxigen de l'estructura cristal·lina. Finalment, hem revelat que amb el mètode TLAG-CSD es poden assolir velocitats de creixement epitaxial per sobre de 100nm/s, sobrepassant dos ordres de magnitud les tècniques convencionals utilitzades en la fabricació de CC (TFA-CSD/PLD/MOCVD). Les capes superconductores van assolir un alineament epitaxial alt dels grans (Δω<0.6º i Δφ<1º), temperatures crítiques (Tc=88-92K) i densitats de corrent competitives (Jc(77K)=2-5MA/cm2). A més, classifiquem el procés TLAG-CSD com altament versàtil per enriquir el paisatge d'ancoratge de vòrtexs, no solament a través de la capacitat de promoure una alta densitat de faltes d'apilament i grans de YBCO orientats-ab molt petits (5-10nm) en les capes de YBCO, sinó per la seva compatibilitat per formar nanocompostos amb l'addició de nanopartícules preformades.Los superconductores de alta temperatura (HTS) han liderado los programas de investigación y desarrollo durante tres décadas y actualmente se encuentran cerca de ser integrados, en aplicaciones de gran escala, en forma de cintas superconductoras (CCs), una arquitectura de cinta robusta y flexible que permite el crecimiento texturado de este material frágil. Un escollo pendiente para la amplia implementación de las CCs es el alto ratio de coste/prestación, esencialmente controlado por el crecimiento complejo y descelerado de la capa de HTS. En esta tesis, cogimos el reto de mejorar el rendimiento y coste de los métodos de crecimiento convencionales a través del desarrollo de una nueva técnica de crecimiento que combina la deposición de soluciones químicas (CSD), deposición del precursor inherentemente de bajo coste, con la alta velocidad de crecimiento, una aproximación de crecimiento de no equilibro que permite la formación de una fase líquida transitoria (Ba-Cu-O) que conduce a la cristalización del producto final: Crecimiento Asistido por Liquido Transitorio a través de CSD (TLAG-CSD). Hemos utilizado este proceso nuevo para crecer capas delgadas de YBa2Cu3O7-d (YBCO), un material HTS basado en cupratos de inigualables prestaciones bajo campos magnéticos aplicados y altas temperaturas. Estas propiedades tan impresionantes solo se pueden alcanzar si el compuesto, electrónicamente anisotrópico, exhibe una textura biaxial y contiene suficientes defectos para anclar a los vórtices. Por tanto, no solo pretendemos la comprensión de los fundamentos del proceso TLAG-CSD, sino también promover formas de crecimiento epitaxial a grandes velocidades, evitando las causas de degradación de la corriente, y fomentando el enriquecimiento de un paisaje adecuado para el anclaje de vórtices. Para afrontar estos retos, hemos combinado varios métodos avanzados de caracterización: Realizamos experimentos de crecimiento in-situ en una instalación de luz sincrotrón para evaluar la cinética de crecimiento a distintas presiones parcial y total de oxígeno, temperatura de crecimiento, rampa de calentamiento, grosor de la capa HTS y composición, así como la adición de nanopartículas (NP). La combinación de los distintos experimentos se ha resumido satisfactoriamente en los llamados diagramas de fase cinéticos, una representación visual de los procesos fuera del equilibrio y un roadmap para su utilización. Las capas de YBCO epitaxiales orientadas según el eje c se estudiaron minuciosamente con difracción de rayos-X, microscopía electrónica de transmisión (TEM), experimentos de transporte eléctrico a bajas temperaturas e inducción magnética para identificar las limitaciones y oportunidades del proceso. Ello incluyó estudiar la microstructura del YBCO y las propiedades eléctricas para evitar la reactividad del líquido con el sustrato, la segregación de fases secundarias, a la vez que asegurar la eliminación de CO2 y el dopaje de oxígeno de la estructura cristalina. Revelamos que con el método TLAG-CSD se pueden alcanzar velocidades de crecimiento epitaxial por encima de 100nm/s, sobrepasando dos órdenes de magnitud las técnicas convencionales utilizadas en la fabricación de CC (TFA-CSD/PLD/MOCVD). Las capas superconductoras alcanzaron un alineamiento epitaxial alto de los granos (Δω<0.6º y Δφ<1º), temperaturas críticas (Tc=88-92K) y densidades de corriente crítica competitivas (Jc(77K)=2-5MA/cm2). Además, clasificamos al proceso TLAG-CSD como altamente versátil para enriquecer el paisaje de anclaje de vórtices, no solo a través de la capacidad de promover una alta densidad de faltas de apilamiento y granos de YBCO orientados-ab muy pequeños (5-10nm) en las capas de YBCO, sino por su compatibilidad para formar nanocompuestos con la adición de nanopartículas preformadas.High temperature superconductors (HTS) have been driving research and development programs for about three decades now and are on the verge of entering large scale utilization in the form of Coated Conductors (CCs), a robust and flexible tape architecture that enables textured growth of the rather brittle material class. A remaining bottleneck for widespread CC implementation is the high cost/performance ratio, essentially controlled by the complex and decelerating step of HTS layer growth. In this thesis we challenge the throughput and cost constraints of conventional growth methods through development of a novel growth technique that combines Chemical Solution Deposition (CSD), an inherently low-cost precursor deposition approach, with a high growth rate, non-equilibrium growth scheme that allows the formation of a transient (Ba-Cu-O) liquid phase prior to crystallization of the final product phase: Transient Liquid-Assisted Growth via CSD (TLAG-CSD). We employed the new process to grow YBa2Cu3O7-d (YBCO) thin films, a cuprate-based HTS material with unmatched current carrying performance in applied magnetic field conditions and at high temperatures. The unprecedented properties can only be reached if the electrically anisotropic compound exhibits biaxial texture and provides sufficient nanometric defects to pin vortices. Hence, not only is the fundamental understanding of the TLAG-CSD process required but also ways to promote epitaxial growth at high rates, avoidance of any current-degrading sources and strategies to enrich the pinning landscape. To tackle these challenges, we combined several advanced characterization methods: In-situ growth experiments at a synchrotron facility were carried out to follow growth kinetics under variation of total and oxygen partial pressures, growth temperatures, heating ramps, film thickness/composition and nanoparticle (NP) addition. The combined set of experiments was successfully summarized in the form of so-called kinetic phase diagrams, a visual representation of the out-of-equilibrium processes and a roadmap for its utilization. Epitaxial, c-axis oriented YBCO films were thoroughly studied via X-ray diffraction, transmission electron microscopy (TEM), low temperature electrical transport and inductive measurements to identify process related limitations and opportunities. This includes probing of the YBCO microstructuture and intrinsic electrical properties to avoid liquid induced substrate reactivity, segregation of secondary phases, while enabling proper CO2 elimination and oxygen doping of the crystal structure. We disclose that epitaxial layer growth rates above 100nm/s can be accomplished through the TLAG-CSD approach, surpassing conventional techniques used in CC manufacturing schemes (TFA-CSD/PLD/MOCVD) by up to two orders of magnitude. Superconducting films are demonstrated to reach high epitaxial grain alignment (Δω<0.6º and Δφ<1º), optimal critical temperatures (Tc=88-92K) and competitive critical current densities (Jc(77K)=2-5MA/cm2). We further classify the TLAG-CSD process as highly versatile in enriching the vortex pinning landscape, not only through its capability to promote a high density of stacking faults and small ab-oriented YBCO grains (5-10nm) in pristine YBCO films, but also through its compatibility with preformed nanoparticle addition in nanocomposites

    Ultrafast transient liquid assisted growth of high current density superconducting films

    Get PDF
    The achievement of high growth rates in YBa2Cu3O7 epitaxial high-temperature superconducting films has become strategic to enable high-throughput manufacturing of long length coated conductors for energy and large magnet applications. We report on a transient liquid assisted growth process capable of achieving ultrafast growth rates (100 nm s−1) and high critical current densities (5 MA cm−2 at 77 K). This is based on the kinetic preference of Ba-Cu-O to form transient liquids prior to crystalline thermodynamic equilibrium phases, and as such is a non-equilibrium approach. The transient liquid-assisted growth process is combined with chemical solution deposition, proposing a scalable method for superconducting tapes manufacturing. Additionally, using colloidal solutions, the growth process is extended towards fabrication of nanocomposite films for enhanced superconducting properties at high magnetic fields. Fast acquisition in situ synchrotron X-ray diffraction and high resolution scanning transmission electron microscopy (STEM) become crucial measurements in disentangling key aspects of the growth process.Authors acknowledge EU for ULTRASUPERTAPE ERC-2014-ADG-669504; COACHSUPENERGY MAT2014-51778-C2-1-R and MAT2014-51778-C2-2-R from MINECO; SuMaTe RTI2018-095853-B-C21 and RTI2018-095853-B-C22 from MICINN and co-financing by the European Regional Development Fund; 2017-SGR 1519 from Generalitat de Catalunya; and EU COST Action NANOCOHYBRI (CA16218). ICMAB authors acknowledge the Center of Excellence award Severo Ochoa SEV-2015-0496. Authors thank Dr. Cornelia Pop, Dr. Bohores Villarejo, Dr. Bernat Mundet, and Dr Anna Palau for contributions at the initial stages of the project. We thank Diana García, Lavinia Saltarelli, Adria Pacheco, Dr. Max Sieger, and Dr. Albert Queralto for help in the feasibility study and preliminary results on thick films and coated conductors. Authors acknowledge support from SuNAM Co Ltd. for providing the buffered metallic substrates for the initial tests on coated conductors. We also acknowledge the Scientific Services at ICMAB, ICTS of IMB-CNM-CSIC, ICN2 Electron Microscopy Division and LMA-INA from Aragon, and SOLEIL Synchrotron for granting beamtime for XRD experiments and the DiffAbs beamline personnel for help. L.S. and J.J. also acknowledge their FPU-MINECO PhD grant, S.R. and N.C. thank University of Girona and Generalitat de Catalunya fort their PhD FI grant, respectively.Peer reviewe
    corecore