41 research outputs found

    Effect of friction and clearance on kinematics and contact mechanics of dual mobility hip implant.

    Get PDF
    The dual mobility hip implant has been introduced recently and increasingly used in total hip replacement to maintain the stability and reduce the risk of post-surgery dislocation. However, the kinematics and contact mechanisms of dual mobility hip implants have not been investigated in detail in the literature. Therefore, finite element method was adopted in this study to investigate dynamics and contact mechanics of a typical metal-on-polymer dual mobility hip implant under different friction coefficient ratios between the inner and the outer articulations and clearances/interferences between the ultra-high-molecular-weight polyethylene liner and the metal back shell. A critical ratio of friction coefficients between the two pairs of contact interfaces was found to mainly determine the rotating surfaces. Furthermore, an initial clearance between the liner and the back shell facilitated the rotation of the liner while an initial interference prevented such a motion at the outer articulating interface. In addition, the contact area and the sliding distance at the outer articulating surface were markedly greater than those at the inner cup-head interface, potentially leading to extensive wear at the outer surface of the liner

    Characterisation of a Peripheral Neuropathic Component of the Rat Monoiodoacetate Model of Osteoarthritis

    Get PDF
    Joint degeneration observed in the rat monoiodoacetate (MIA) model of osteoarthritis shares many histological features with the clinical condition. The accompanying pain phenotype has seen the model widely used to investigate the pathophysiology of osteoarthritis pain, and for preclinical screening of analgesic compounds. We have investigated the pathophysiological sequellae of MIA used at low (1 mg) or high (2 mg) dose. Intra-articular 2 mg MIA induced expression of ATF-3, a sensitive marker for peripheral neuron stress/injury, in small and large diameter DRG cell profiles principally at levels L4 and 5 (levels predominated by neurones innervating the hindpaw) rather than L3. At the 7 day timepoint, ATF-3 signal was significantly smaller in 1 mg MIA treated animals than in the 2 mg treated group. 2 mg, but not 1 mg, intra-articular MIA was also associated with a significant reduction in intra-epidermal nerve fibre density in plantar hindpaw skin, and produced spinal cord dorsal and ventral horn microgliosis. The 2 mg treatment evoked mechanical pain-related hypersensitivity of the hindpaw that was significantly greater than the 1 mg treatment. MIA treatment produced weight bearing asymmetry and cold hypersensitivity which was similar at both doses. Additionally, while pregabalin significantly reduced deep dorsal horn evoked neuronal responses in animals treated with 2 mg MIA, this effect was much reduced or absent in the 1 mg or sham treated groups. These data demonstrate that intra-articular 2 mg MIA not only produces joint degeneration, but also evokes significant axonal injury to DRG cells including those innervating targets outside of the knee joint such as hindpaw skin. This significant neuropathic component needs to be taken into account when interpreting studies using this model, particularly at doses greater than 1 mg MIA
    corecore