226 research outputs found

    Blastocystis hominis: Is it a cause of diarrhea?

    Get PDF
    Blastocystis hominis can be found in the fecal sample of both healthy individuals without symptoms and those having gastrointestinal problems. Therefore, the pathogenicity and pathophysiology remain controversial. The aim of this study was to determine if Blastocystis hominis is a causative agent of diarrhea and investigates its prevalence among patients visiting King Abdulaziz University Hospital, Jeddah, Saudi Arabia from January 2013 till June 2015 and to determine any significant correlation between age, gender, nationality and other parasitic infection in the presence of Blastocystis hominis. Data were collected from Parasitology lab, using the database at King Abdulaziz University Hospital, Jeddah, Saudi Arabia and statistical analysis were done by utilizing Statistical package for social science program (SPSS). Out of 3,035 of total stool analysis requested, 157 samples were positive for B. hominis (5.2%). 80 (51.6%) were males, and 76 (48.4%) were females. The distribution of B. hominis infection was elevated in 31-50 aged groups (25.5%). There was a statistically significant correlation between the presence of Blastocystis and diarrhea at p < 0.05 and there was no correlation between age, sex, nationality and other parasites with positivity of B. hominis. Blastocystis can be considered as a causative agent of diarrhea. Further studies need to be done in order to investigate its role in pathogenicity and more data must be revised to assess the pathogenicity of Blastocystis subtypes

    Quality Evaluation of Honey Obtained from Different Sources

    Get PDF
    Abstract Honey is a food rich in nutrients essential for hu man life such as sugars, proteins, vitamins and minerals and uses honey as food and medicine. Honey is considered one of the most foods which can be adulterated, therefore this study aimed to assess the quality of different samples of natural and industrial honey and matching the results with the international standards. Chemical and physical methods were used in the study to determine the various chemical and physicochemical characteristics. For determinat ion of sugars, a High Performance Liquid Chro matography (HPLC) was used. The results indicate that there were no significant differences in most of the chemical and physicochemical characteristics of natural honey and industrial honey. The results also indicated that the various honey types contained sucrose (10.7%-3.48%), fructose (14.74% -39.01%), glucose (14.09% -35. 6%). Ho wever, the industrial honey was the richest type in nutrients, so its use in industry is highly reco mmended

    during the 2009 Prime Expedition Scientific Cruise (PESC-09)

    Get PDF
    www.atmos-chem-phys.net/14/8137/2014/ doi:10.5194/acp-14-8137-201

    Rilonacept and Anakinra in Recurrent Pericarditis: A Systematic Review and Meta-Analysis

    Get PDF
    Interleukin 1 (IL-1) has been indicated as a mediator of recurrent pericarditis. Rilonacept, a soluble IL-1 receptor chimeric fusion protein neutralizing interleukin 1 alpha (IL-1α) and interleukin 1 beta (IL-1β), has demonstrated promising results in a phase II study in recurrent or refractory pericarditis. Anakinra is a recombinant inhibitor of the IL-1 receptor with a demonstrated reduction in the incidence of recurrent pericarditis. Definite pharmacological management of pericarditis is key to preventing recurrences, mostly treatment options for recurrent pericarditis refractory to conventional drugs. Here we critically discuss the existing therapy options for recurrent pericarditis, with a focus on new pharmacological approaches: rilonacept and anakinra. A systematic search was conducted across online databases such as PubMed, Cochrane, Google Scholar, ScienceDirect, CINAHL, Scopus, and Embase to obtain clinical trials that assess the effectiveness of anti-interleukin 1 therapy such as anakinra and rilonacept in the management of recurrent pericarditis. Our study concluded that anti-interleukin 1 therapy significantly improved both the quality of life and the clinical outcomes of the study population. These outcomes were most prominent with the use of rilonacept and anakinra in the trial treatment. Rilonacept and anakinra are valuable options in case of recurrent pericarditis refractory to conventional drugs

    Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09)

    Get PDF
    Abstract. Atmospheric concentrations of very short-lived species (VSLS) bromocarbons, including CHBr3, CH2Br2, CHCl2Br, CHClBr2, and CH2BrCl, were measured in the Strait of Malacca and the South China and Sulu–Sulawesi seas during a two-month research cruise in June–July 2009. The highest bromocarbon concentrations were found in the Strait of Malacca, with smaller enhancements in coastal regions of northern Borneo. CHBr3 was the most abundant bromocarbon, ranging from 5.2 pmol mol−1 in the Strait of Malacca to 0.94 pmol mol−1 over the open ocean. Other bromocarbons showed lower concentrations, in the range of 0.8–1.3 pmol mol−1 for CH2Br2, 0.1–0.5 pmol mol−1 for CHCl2Br, and 0.1–0.4 pmol mol−1 for CHClBr2. There was no significant correlation between bromocarbons and in situ chlorophyll a, but positive correlations with both MODIS and SeaWiFS satellite chlorophyll a. Together, the short-lived bromocarbons contribute an average of 8.9 pmol mol−1 (range 5.2–21.4 pmol mol−1) to tropospheric bromine loading, which is similar to that found in previous studies from global sampling networks (Montzka et al., 2011). Statistical tests showed strong Spearman correlations between brominated compounds, suggesting a common source. Log–log plots of CHBr3/CH2Br2 versus CHBr2Cl/CH2Br2 show that both chemical reactions and dilution into the background atmosphere contribute to the composition of these halocarbons at each sampling point. We have used the correlation to make a crude estimate of the regional emissions of CHBr3 and to derive a value of 32 Gg yr−1 for the Southeast (SE) Asian region (10° N–20° S, 90–150° E). Finally, we note that satellite-derived chlorophyll a (chl a) products do not always agree well with in situ measurements, particularly in coastal regions of high turbidity, meaning that satellite chl a may not always be a good proxy for marine productivity. We would like to thank MOSTI (Malaysian Ministry of Science, Technology and Innovation). for giving opportunities and financial support for the University of Malaya (UM) and Universiti Kebangsaan Malaysia to participate in this scientific cruise, and other Malaysian public universities and agencies who helped during sampling. The Malaysian Royal Navy is thanked for their help and assistance in all aspects of the cruise. We also thank the SHIVA European FP7 project (grant 226224), NERC, NERC-NCAS and the British Council, through a PMI2 grant, for their support. Neil Harris would like to thank NERC for his Research Fellowship; Emma Leedham and Matt Ashfold thank NERC for studentships, and Doreena Dominick, Lin Chin Yik, Fatimah Ahamad and Nur Ily Hamizah for their assistance and the Ministry of Higher Education Malaysia (KPT’s) ERGS grant ER025-2013A. Finally, we also would like to thank Universiti Kebangsaan Malaysia (UKM) for the ICONIC-2013-004 grant, MOSTI e-science grant 04-01-02-SF-0752 for Universiti Kebangsaan Malaysia (UKM), UKM GGPM-2013-080 and UKM DPP-2014-162 and GUP-2013-057 for financial support.This paper was originally published in Atmospheric Chemistry and Physics, 14, 8137-8148, doi:10.5194/acp-14-8137-2014, 201

    Alternative initiation and splicing in dicer gene expression in human breast cells

    Get PDF
    INTRODUCTION: Dicer is a ribonuclease that mediates RNA interference both at the transcriptional and the post-transcriptional levels. Human dicer gene expression is regulated in different tissues. Dicer is responsible for the synthesis of microRNAs and short temporal (st)RNAs that regulate the expression of many genes. Thus, understanding the control of the expression of the dicer gene is essential for the appreciation of double-stranded (ds)RNA-mediated pathways of gene expression. Human dicer mRNA has many upstream open reading frames (uORFs) at the 5'-leader sequences (the nucleotide sequence between the 5'-end and the start codon of the major ORF), and we studied whether these elements at the 5'-leader sequences regulate the expression of the dicer gene. METHOD: We determined the 5'-leader sequences of the dicer mRNAs in human breast cells by 5'-RACE and S1-nuclease protection analysis. We have analyzed the functions of the 5'-leader variants by reporter gene expression in vitro and in vivo. RESULTS: We found that the dicer transcripts in human breast cells vary in the sequence of their 5'-leader sequences, and that alternative promoter selection along with alternative splicing of the 5'-terminal exons apparently generate these variations. The breast cell has at least two predominant forms of dicer mRNAs, one of which has an additional 110 nucleotides at the 5'-end. Sequence comparison revealed that the first 80 nucleotides of these mRNA isoforms are encoded by a new exon located approximately 16 kb upstream of the reported start site. There are 30 extra nucleotides added to the previously reported exon 1. The human breast cells studied predominantly express two 5'-leader variants of dicer mRNAs, one with the exons 2 and 3 (long form) and the other without them (short form). By reporter gene expression analysis we found that the exon 2 and 3 sequences at the 5'-leader sequences are greatly inhibitory for the translation of the mRNA into protein. CONCLUSION: Dicer gene expression in human breast cells is regulated by alternative promoter selection to alter the length and composition of the 5'-leader sequence of its mRNA. Furthermore, alternative splicing of its exon 2 and 3 sequences of their pre-mRNA creates a more translationally competent mRNA in these cells

    ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells

    Get PDF
    A Disintegrin and Metalloproteinase-15 (ADAM15) is a transmembrane protein involved in protein ectodomain shedding, cell adhesion and signalling. We previously cloned and characterised alternatively spliced variants of ADAM15 that differ in their intracellular domains and demonstrated correlation of the expression of specific variants with breast cancer prognosis. In this study we have created isogenic cell panels (MDA-MB-231 and MCF-7) expressing five ADAM15 variants including wildtype and catalytically inactive forms. The expression of ADAM15 isoforms in MDA-MB-231 cells led to cell clustering to varying degree, without changes in EMT markers vimentin, slug and E-cadherin. Analysis of tight junction molecules revealed ADAM15 isoform specific, catalytic function dependent upregulation of Claudin-1. The expression of ADAM15A, and to a lesser degree of C and E isoforms led to an increase in Claudin-1 expression in MDA-MB-231 cells, while ADAM15B had no effect. In MCF-7 cells, ADAM15E was the principal variant inducing Claudin-1 expression. Sh-RNA mediated down-regulation of ADAM15 in ADAM15 over-expressing cells reduced Claudin-1 levels. Additionally, downregulation of endogenous ADAM15 expression in T47D cells by shRNA reduced endogenous Claudin-1 expression confirming a role for ADAM15 in regulating Claudin-1 expression. The PI3K/Akt/mTOR pathway was involved in regulating Claudin-1 expression downstream of ADAM15. Immunofluorescence analysis of MDA-MB-231 ADAM15A expressing cells showed Claudin-1 at cell-cell junctions, in the cytoplasm and nuclei. ADAM15 co-localised with Claudin-1 and ZO1 at cell-cell junctions. Immunoprecipitation analysis demonstrated complex formation between ADAM15 and ZO1/ZO2. These findings highlight the importance of ADAM15 Intra Cellular Domain-mediated interactions in regulating substrate selection and breast cancer cell phenotype

    Protein Kinase C Activation Has Distinct Effects on the Localization, Phosphorylation and Detergent Solubility of the Claudin Protein Family in Tight and Leaky Epithelial Cells

    Get PDF
    We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier
    corecore