8 research outputs found

    Ex Vivo Drug Testing in Patient-derived Papillary Renal Cancer Cells Reveals EGFR and the BCL2 Family as Therapeutic Targets

    Full text link
    BACKGROUND Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer

    Quantitative proteome landscape of the NCI-60 cancer cell lines

    Get PDF
    Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and systematic quantification of pathway activities. Stoichiometric relationships of interacting proteins for DNA replication, repair, the chromatin remodeling NuRD complex, β-catenin, RNA metabolism, and prefoldins are more evident than that at the mRNA level. The data are available in CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predicting drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In summary, we present a novel proteome resource for the NCI-60, together with relevant software tools, and demonstrate the benefit of proteome analyses

    Lossless Microarray Image Compression by Hardware Array Compactor

    No full text
    Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new architecture for lossless compression of microarray images. In this architecture, we have used a dedicated hardware for separation of foreground pixels from the background ones. By separating these pixels and using pipeline architecture, a higher lossless compression ratio has been achieved as compared to other existing method

    A Case for a Human Immuno-Peptidome Project Consortium.

    No full text
    A multidisciplinary group of researchers gathered at the Hönggerberg Campus at ETH Zurich, Switzerland, for the first meeting on the Human Immuno-Peptidome Project (https://hupo.org/human-immuno-peptidome-project/). The long-term goal of this project is to map the entire repertoire of peptides presented by human leukocyte antigen molecules using mass spectrometry technologies, and make its robust analysis accessible to any immunologist. Here we outline the specific challenges identified toward this goal, and within this framework, describe the structure of a multipronged program aimed at addressing these challenges and implementing solutions at a community-wide level. Pillars of that program are: (1) method and technology development, (2) standardization, (3) effective data sharing, and (4) education. If successful, this community-driven endeavor might provide a roadmap toward new paradigms in immunology

    Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis

    No full text
    Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.ISSN:1550-4131ISSN:1932-742

    Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis

    No full text
    Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.ISSN:1550-4131ISSN:1932-742
    corecore