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SUMMARY

Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling

technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and

visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic pro-

teins and systematic quantification of pathway activities. Stoichiometric relationships of interacting

proteins for DNA replication, repair, the chromatin remodeling NuRD complex, b-catenin, RNA meta-

bolism, and prefoldins are more evident than that at the mRNA level. The data are available in

CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual

users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug

response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predict-

ing drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In sum-

mary, we present a novel proteome resource for the NCI-60, together with relevant software tools,

and demonstrate the benefit of proteome analyses.

INTRODUCTION

To date, forays into the molecular landscape of diseases, in particular cancers, have primarily focused on

genomics and transcriptomics (Barretina et al., 2012; Cancer Genome Atlas Research et al., 2013; Garnett

et al., 2012) due to the maturity and availability of high-throughput DNA- and RNA-based techniques. Pro-

tein-level measurements, although important for providing the granularity and detail necessary for person-

alized therapeutic decisions, are underutilized due to technical hurdles. Advances in data-dependent

acquisition (DDA) mass spectrometry (MS) have permitted quantitative proteomic profiling of hundreds

of tumor samples using multi-dimensional fractionated MS analyses of each sample (Mertins et al., 2016;

Zhang et al., 2014, 2016), demonstrating the added value of protein measurement in classifying tumors.

Nevertheless, such DDA workflows suffer from relatively lower sample-throughput, higher sample con-

sumption, and increased technical complexity relative to genomic analyses. These factors have precluded

their routine use in clinically relevant applications (e.g. tumor classification and drug response prediction)

at the speed and scale achieved by genomic and transcriptomic approaches (Barretina et al., 2012; Garnett

et al., 2012; Rajapakse et al., 2018; Reinhold et al., 2019).

The NCI-60 human cancer cell line panel contains 60 lines from nine different tissue types. The NCI-60 have

been molecularly and pharmacologically characterized with unparalleled depth and coverage, offering a

prime in vitro model to further our understanding of cancer biology and cellular responses to anti-cancer

agents (Monks et al., 2018; Reinhold et al., 2012, 2019; Shoemaker, 2006). Discoveries enabled by the NCI-

60 in recent years include the development of the FDA-approved drugs, such as oxaliplatin for the treat-

ment of colon cancers (Fojo et al., 2005), eribulin for metastatic breast cancers (Shoemaker, 2006), borte-

zomib for the treatment of multiple myeloma (Holbeck et al., 2010), and romidepsin for cutaneous T cell

lymphomas (Bates et al., 2015), and development of the indenoisoquinoline class of non-camptothecin

topoisomerase I inhibitors (Burton et al., 2018). The sensitivity of the NCI-60 to over 100,000 synthetic or

natural compounds derived from a wide range of academic and industrial sources has been measured,
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constructing the most comprehensive open resource for cancer pharmacology. The NCI-60 remains

actively used by many academic laboratories and drug companies to assess overall toxicity and drug

response selectivity. In addition, many of the NCI-60 cell lines are widely used for cell biology and pharma-

cology (MCF-7, MDA-MB231, HCT116, HCT15, HT29, HL60, CCR-CEM, K562, etc.), and 55 and 44 of the

NCI-60 cell lines overlap within larger cancer cell line databases GDSC and CCLE, respectively (Rajapakse

et al., 2018), providing a unique and highly valuable resource for cross-comparisons.

The proteome of the NCI-60 cells has been analyzed previously by data-dependent analysis with a

commonly used discovery MS technique (Gholami et al., 2013). This proteome dataset was obtained using

a sophisticated two-dimensional peptide fractionation strategy. However, peptides and proteins were

quantified without technical replicates (Gholami et al., 2013), making it difficult to evaluate quantitative ac-

curacy. To achieve reproducible and high-throughput proteomic profiling while developing new technol-

ogies, we have developed a workflow (Guo et al., 2015; Shao et al., 2015) integrating pressure cycling tech-

nology (PCT) with SWATH-MS. PCT is an emerging sample preparation method that accelerates and

standardizes sample preparation for proteomic profiling (Powell et al., 2012). SWATH-MS is an MS-based

proteomic technique that consists of data-independent acquisition (DIA) and a targeted data analysis strat-

egy with unique advantages over other MS-based proteomic methods (Gillet et al., 2012; Rost et al., 2014).

With this technique, all MS-measurable peptides of a sample are fragmented and recorded recursively, and

the resulting digital proteome maps can be used to reproducibly detect and quantify proteins across large

numbers of samples without the need for isotope labeling. The integrated PCT-SWATH workflow thus

significantly increases the sample throughput and data reproducibility, providing quantitative accuracy,

while also reducing sample consumption to ca. 1 microgram of total peptide mass per sample (Guo

et al., 2015; Shao et al., 2015).

Here, we describe the acquisition of proteome maps of the NCI-60 in duplicate by PCT-SWATH and make

them available via the CellMiner portals (discover.nci.nih.gov/cellminercdb/ and discover.nci.nih.gov/

cellminer), enabling interactive exploration and data download (Rajapakse et al., 2018). The techniques

described in this report allowed the efficient acquisition of 120 proteome maps (within about 30 working

days from sample preparation to SWATH data acquisition on a single instrument) with minimal sample

requirement (ca. 1 microgram of total peptide mass). We focused on 3,171 SwissProt proteotypic proteins

that were identified across all cell lines, generating a data matrix (120 proteomes vs. 3,171 proteins). Raw

signals of each peptide and protein in each sample were curated and visualized with an expert system. The

proteomic data expand the existing NCI-60 molecular landscapes (Holbeck et al., 2010; Monks et al., 2018;

Rajapakse et al., 2018; Reinhold et al., 2012, 2019) and their integration with the larger databases from the

Broad-MIT (CCLE, CTRP) and MGH-Sanger (GDSC) (Rajapakse et al., 2018), allowing systematic investiga-

tion of the complementarity among genomics, transcriptomics, and proteomics.
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RESULTS

Acquisition of the NCI-60 Proteome

We applied the PCT-SWATH workflow (Guo et al., 2015) to generate quantitative proteome maps of the

NCI-60 cell lines in technical replicates, resulting in 120 SWATH maps with high reproducibility at the

raw data level (Figure S1). Approximately 1 microgram peptide mass per sample was sufficient for analyses.

The PCT-assisted sample preparation took about 18 working days and the SWATH-MS data acquisition

about 12 working days. Thus, the entire process, from sample preparation to data acquisition, could be

accomplished within 30 working days. This results from the elimination of multidimensional fractionation

and the consequent processing of each sample using one barocycler per mass spectrometer, from which

a single file per sample was acquired (Figure S1, Table S1). We have matched our cell line IDs with a pre-

vious publication from the Kuster group (Gholami et al., 2013) and corrected a few known errors in the cell

line identifiers (Table S1). These cell lines were shuffled randomly to avoid bias from tissue types and mini-

mize batch effects from PCT-assisted sample preparation. The two sets of technical replicates were ac-

quired using SWATH-MS in different time periods to allow the evaluation of batch effects from theMS anal-

ysis. This approach constitutes an advance in sample-throughput compared with other cancer proteomic

workflows of similar scale (Gholami et al., 2013; Mertins et al., 2016; Zhang et al., 2014, 2016).

SWATH proteomemaps contain fragment ion chromatograms from all MS-measurable peptides, albeit in a

highly convoluted form. To interpret the SWATH maps, we built a human cancer cell line spectral library

containing 86,209 proteotypic peptides, i.e. peptides that uniquely identify a specific protein from 8,056
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SwissProt proteins (Table S1). Using this library and the OpenSWATH software (Rost et al., 2014), we iden-

tified 6,556 protein groups, covering 81% of the library (Figure S2). To avoid ambiguity of peptide/protein

quantification, we limited our analyses to canonical and proteotypic peptides and proteins by excluding

protein isoforms, un-reviewed protein sequences, peptide/protein sequence variants, and protein groups

that could not be deconvoluted.

Development of DIA-expert for SWATH/DIA Data Curation

We evaluated the technical variation of each measurement throughmanual inspection of the OpenSWATH

results based on the replicated measurement for each cell line. Observedmissing values and technical vari-

ation were attributed to cell-type-specific interfering signals leading to invalid SWATH assays and the pres-

ence of irregular liquid chromatography (LC) and MS behavior of certain peptides. These phenomena have

been observed previously in selected reaction monitoring (SRM)-based targeted proteomics studies (Pi-

cotti and Aebersold, 2012). To obtain high accuracy quantitative data, we developed an expert system,

i.e. DIA-expert to refine the peptide identification and quantification (Figure S3).

The DIA-expert reads SWATH search results containing a q-value for each peptide identified in a sample

and then selects the sample in which a peptide precursor is identified with the highest confidence among

all samples (Figure S3). The selected sample then becomes the reference against which identification of the

particular peptide in the other samples is evaluated. This step is iterated for each peptide precursor

analyzed. Then, DIA-expert selects from the SWATH assay library the peptides identified for the specific

sample set and proceeds to build a new library containing all the transitions for each peptide precursor.

Extracted chromatograms for each precursor and its fragments are obtained. This initial transition set is

used for subsequent transition refinement. We next applied empirical expert rules (Keller et al., 2002;

Shao et al., 2015), including peak detection expert, reference sample expert, and peak group pairing

expert. The software outputs a data matrix of quantities of each peptide in all samples and graphically pre-

sents the peak groups of curated peptide fragments used for generating the reported results. In contrast to

typical SRM or SWATH/DIA analysis strategies, which apply the same few selected peptide fragments as

indicators of peptide abundance in all cohort samples, the DIA-expert examines the sample-specific suit-

ability of all peptide fragments and builds peptide abundance values based on ad hoc curated peptide

fragments.

DIA-Expert-Curated Results of the NCI-60 Proteome

Excluding proteins/peptides that were not technically reproducible resulted in 22,554 proteotypic pep-

tides from 3,171 proteins, with 8%missing values at the peptide level and 0.1%missing values at the protein

level across all MS runs (Table S1). On average, seven peptide precursors and six unique peptide se-

quences were identified per protein. Several proteins were identified with more than 200 peptides (Fig-

ure 1B). The proteins excluded by DIA-expert may not be incorrect identifications but rather irreproducible

quantifications due to either technical (for instance the signal-to-noise ratio) or biological issues (such as

post-translational modifications or splicing variants). Improved computational methods may recover

more information from this dataset.

Most peptides for the 3,171 proteins were quantified in all cell lines at both MS1 and MS2 levels. Although

the replicates show consistent quantification, different cell lines expressed variable levels of proteins. Two

representative peptides are shown in Figure 1A. The coefficients of determination (R2) between technical

replicates for the overall expression of peptides (Figure 1C) and proteins (Figure 1D) were 0.974 and 0.978,

respectively, with a dynamic range over five orders of magnitude (Figure 1E). The DIA-expert provides the

raw MS signals for each quantitative value, allowing visual inspection of the MS signal for every peptide in

each sample. Increasing theminimal number of peptides identified per protein to 2, 3, or 4 resulted in fewer

proteins quantified (2,200; 1,741; and 1,428 proteins, respectively). However, this did not substantially

improve quantitative accuracy (Figure S4).

Characterization of the NCI-60 Quantitative Proteomes

The landscape of the 120 proteotypes is displayed in Figure 2A. Technical replicates of the quantified pro-

teotypes were clustered using an unsupervised approach, confirming high quantitative accuracy. In most

cases, the proteotypes are not strikingly different across different cancer cell lines, in sharp contrast with

the distinct proteomes of tumor versus non-tumor kidney tissues (Guo et al., 2015). The median protein in-

tensity coefficient of variation (CV) of the different cell lines was 48%. The CV demonstrated a low
666 iScience 21, 664–680, November 22, 2019
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Figure 1. Acquisition of NCI-60 Proteotype

(A) Representative peptide signals as curated and visualized by the DIA-expert software.

(B–D) (B) Distribution of peptide precursors and peptides per protein. Overall coefficient of determination between technical replicates at the peptide level

(C) and the protein level (D). Heatmap of the log10 transformed intensity of each peptide/protein in each cell line technical replicate.

(E) Dynamic range of the MS signals for 22,968 proteotypic peptides.
dependence on protein abundance, as evident from the distribution of its values for different expression

level quantile groups of the measured proteins (Figure 2B).

We then compared the data with the previously reported DDA-MS proteomic data for the NCI-60 (Gholami

et al., 2013). Whereas the DDA data reported a comparable number of IPI protein groups per cell line as the

SwissProt proteotypic protein number from this SWATH dataset (Table S2), the SWATH data exhibited a

much higher degree of consistency (Figure S5) and better quantitative accuracy (Figures S6–S32).
Accessibility of the NCI-60 Proteotypes

To enable easy data access, visualization, and comparison with other NCI-60 datasets, we have incorpo-

rated the SWATH data into the CellMiner databases and web application (Rajapakse et al., 2018; Reinhold

et al., 2012; Shankavaram et al., 2009). This allows direct downloads of the data, as well as direct compar-

ative and integrative analyses with other molecular and pharmacological data, (e.g. sensitivity of each cell

line to over 20,000 compounds) and the inspection of specific genes, up to 150 per query. The detailed in-

structions for using this resource are provided in Figure S33 and at the project websites (discover.nci.nih.

gov/cellminer and discover.nci.nih.gov/cellminercdb). Figure 2E shows snapshots of data queries for KU70

versus KU80 protein and transcript expression levels (XRCC6 and XRCC5, respectively). Raw and processed

data matrices of the NCI-60 proteotype have also been deposited in public databases, including PRIDE

(Jones et al., 2006) and ExpressionArray (Brazma et al., 2003).
Insights from a Quantitative Comparison of Protein versus Transcript Expression

Because of the extensive prior characterization of the NCI-60 transcriptome (Monks et al., 2018; Rajapakse

et al., 2018; Reinhold et al., 2012), we were able to correlate protein and gene expression for each of the

3,171 proteins quantified across the NCI-60. Table S3 shows that some proteins exhibit a high correlation

with their transcript, indicating the transcripts are the main drivers of protein expression. Correlations and
iScience 21, 664–680, November 22, 2019 667
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Figure 2. Characterizing the NCI-60 Quantitative Proteomes

(A) Heatmap overview of NCI-60 proteotype data matrix. Quantification of 3,171 Swiss-Prot proteins in 120 SWATH runs.

(B) Variation of protein expression for all proteins (All) and proteins in each abundance quantile group (from low

abundance to high abundance).

(C) Density plot of correlations between pairs of random proteins versus pairs of proteins within a complex.

(D) Expression ratio variation of protein complexes in the NCI-60. The x axis shows the average Pearson correlation of

each protein complex across the NCI-60. The y axis shows the average abundance of proteins in a complex.

(E) Snapshot image obtained with CellMinerCDB (Rajapakse et al., 2018) protein (left image) and mRNA (right image)

expression of XRCC6/KU70 and XRCC5/KU80.

(F) The correlation densities for protein pairs derived from the same complex are significantly shifted relative to those

from random pairs across different resources. In each plot, the light blue density is for correlation values from random

protein pairs. Densities associated with specific resources for protein complexes or stable protein interactions are

indicated with different colors. The relatively lighter resource-colored density plot shows the distribution of correlation

values for true protein interactors, whereas the darker one is derived from random pairs present in that database. The

upper panel shows correlation values for the measured protein quantities, whereas the lower one corresponds to the

mRNA levels of the same proteins. The vertical dashed red line indicates a value of the Spearman’s coefficient of

correlation of 0.75.
cell line identification can be readily checked with CellMinerCDB (see Figures S34–S46). The most highly

correlated proteins include MARCKSL1 (myristyolated alanine-rich C kinase; r = 0.93), LGALS3 (galectin

3; r = 0.90), and ITGB1 (integrin-b1; r = 0.88) (Table S3 and Figure S34). PARP1 (poly(ADP-ribose)polymerase

1; r = 0.77) and CDK2 (cyclin-dependent kinase 2; r = 0.58) also showed high correlation. High correlations
668 iScience 21, 664–680, November 22, 2019



would be expected for structural proteins and proteins with short half-lives. By contrast, some protein levels

are not correlated with their transcripts (Table S3). These include TP53 (r = 0.14), TOP1 (r = 0.13), TOP2B (r =

0.09), and DHX9 (RNA helicase A; r = - 0.1; see Figure S35C). Such proteins are likely primarily regulated by

post-transcriptional modifications and protein turnover.

From a translational and omic viewpoint, these results indicate that the proteins exhibiting high correlation

with transcripts could be indirectly assessed by transcriptome analyses, including RNA-Seq, whereas tran-

scriptome analyses are insufficient for the proteins that are not consistently correlated with their transcripts.

In these cases, proteomic analyses, including those enabled by the SWATH-proteome, are most useful to

phenotype samples. Our analyses and the CellMinerCDB tools provide insight into identifying such pro-

teins (Table S3).
Protein Complex Predictions Based on Stoichiometry at the Protein Levels across the NCI-60

A unique benefit of proteomic data, compared with genomic and transcriptomic data, is its capacity to

reveal the abundance of protein complexes and their stoichiometry (Ori et al., 2016). Our measurements

included 101 predicted protein complexes comprising 1,045 proteins (Table S4) from a curated resource

(Ori et al., 2016). Significantly high Pearson correlation coefficients for pairs of proteins that are part of a

complex further supported the quantitative accuracy of our data matrix (Figure 2C). This was also reflected

by the conserved stoichiometry of stable protein complexes, such as prefoldins (PFN1, PFN6, PFN4, and

PFN5), transcription complexes (FUS, EWSR1, and DHX9), DNA repair complexes (KU70 and KU80; Fig-

ure 2E), replication and chromatin complexes, as well as membrane protein complexes (catenins and EP-

CAM) (Figure 2D, with additional examples in the next section).

We further investigated whether this trend was present when we used different public resources to assign

protein complexes. We compared interacting protein pairs or proteins assigned to complexes according

to (1) a curated CORUM database of mammalian protein complexes, (2) annotations for stable interac-

tions in the Reactome database, (3) high-quality interaction partners in the STRING database, (4) known

and modeled interactions in the Interactome3D based on available protein structures, (5) interaction pairs

observed in at least three affinity purification-mass spectrometry experiments (APMS, see Methods), or (6)

a small set of curated and annotated protein complexes available from the EMBL-EBI Complex Portal

(Figure 2F, top panel). Compared with random protein pairs, the correlation of the measured protein

quantities for the annotated interaction partners was strongly shifted to higher values (p value <1.1 x

10�10, Wilcoxon test). Of interest, the shift also reflected the confidence of protein complex assignments

with the mean values of 0.43, 0.24, 0.21, 0.21, 0.19, and 0.13 for protein pairs from the EMBL-EBI complex

portal, CORUM, Interactome3D, Reactome, STRING databases, and APMS studies, respectively. In addi-

tion, for almost all resources, a shoulder with overrepresented negative correlations (r % �0.5) was

visible.

Next, we performed the same analysis, substituting transcriptomics data for protein quantities for the same

protein pairs (Figure 2F, bottom panel). The co-expression of the interacting protein pairs was verified by

the positive shift of correlation values for mRNA quantities. However, this shift was smaller compared with

the proteomic comparisons (Figure 2F), and the right-skewed shoulder reflecting overrepresentation of

highly correlating protein interactors was absent using mRNA levels (demarcated by the red vertical

dashed line in Figure 2F). Moreover, the left shoulder corresponding to negatively correlated protein pairs

(r < �0.5) at the protein level disappeared when using mRNA levels (Figure 2F). Correlations of expression

values for protein interaction partners often reflect a preserved stoichiometry of protein complexes. Our

comparison of mRNA and protein quantities across the NCI60 demonstrates the benefits of proteomics

data for detecting protein-protein interactions.
Examples of Stoichiometric Protein Complexes

KU70 and KU80 (XRCC6 and XRCC5, respectively) form a heterodimer critical for DNA recombination, im-

mune system maturation, DNA repair, and resistance to radiotherapy and chemotherapy. Figure 2E shows

the high correlation between KU70 and KU80 protein levels across the NCI-60. Remarkably, this correlation

is not seen using mRNA measurements (Figures 2E and S36), indicating that the expression of Ku is tightly

regulated by post-transcriptional mechanisms independent of cancer types. Indeed, KU80 is degraded

when not bound to KU70 (Chang et al., 2016; Kanungo, 2010).
iScience 21, 664–680, November 22, 2019 669



Another example of a small protein complex stoichiometrically regulated across the NCI-60 is the hetero-

trimeric RP1/2/3 complex, which is critically important for coating single-stranded DNA during replication

and repair. Using the CellMinerCDB ‘‘Compare Patterns’’ tool with RPA3 as the ‘‘identifier’’ and selecting

‘‘swa’’ as ‘‘Data Type’’ yields RPA2 as top correlate (p = 0.75; r = 6.583 10�12), followed by the two subunits

of the MCM replicative helicase MCM5 and MCM7 (p = 0.63; r = 1 3 10�7) (Figure S37). Such highly signif-

icant correlations are not observed for the corresponding transcripts (Figure S38). We also tested proteins

co-expressed with PCNA, the essential cofactor for replicative DNA polymerase processivity. Because

PCNA is also included in the small number of proteins determined by reverse phase proteomic array

(RPPA) (Nishizuka et al., 2003), we were able to establish the reproducibility of the SWATH measurements

by plotting PCNA protein expression with SWATH vs. RPPA using CellMinerCDB (r = 0.63; p = 1 3 10�7;

Figure S39). Repeating the CellMinerCDB ‘‘Compare Patterns’’ with PCNA, we found protein co-expression

of PCNA with MCM3 and notably with FEN1, the replicative nuclease for the maturation of Okazaki frag-

ments (Figure S38), both of which are biologically logical. To our knowledge, the stoichiometric relation-

ship of PCNA with FEN1 has not been reported previously.

Other hypotheses and correlations can be readily found by users with the CellMinerCDB Compare Patterns

tool. For instance, the large subunit of ribonucleotide reductase (RRM1) is highly correlated with the purine

metabolic enzyme PAICS by SWATH (0.76, p value <1.1e-10). Notable instances detailed below also

include the two RNA binding proteins involved in mRNA splicing, DHX9 and FUS, and the nucleosome re-

modeling complex NuRF and b-catenin (CTNNB1).

Both DHX9 (RNase A) and FUS (Fused in sarcoma and associated with liposarcoma and amyotrophic lateral

sclerosis [AML]) are stoichiometrically coregulated across the NCI-60 with highly significant correlations at

the protein levels (r = 0.81; p = 4.7 3 10�15) even more than at the transcript levels (r = 0.42; p = 0.001) (Fig-

ure S35). Looking further at the cells co-expressing FUS and DHX9 transcripts across the larger MGH-

Sanger (GDSC) database (Garnett et al., 2012) using CellMinerCDB (Rajapakse et al., 2018) confirmed

the coregulation of these two RNA binding genes across 986 cell lines (r = 0.52; p = 1.8e-70), with highest

expression in leukemia, lymphomas, and small cell lung cancer cell lines (Figure S40).

For large protein complexes, the nucleosome remodeling deacetylase (NuRD) complex (Basta and Rauch-

man, 2015) provides a notable example of protein complex stoichiometry. NuRD consists of at least 11 pro-

teins (Figures S41 and S47B), including the two retinoblastoma binding proteins RBB7 and RBB4, the two

metastasis-associated proteins MTA3 and MTA1, the two histone deacetylases HDAC2 and HDAC1, the

three methyl-CpG-binding proteins GATAD2B, GATAD2A, and MBD3, and the chromodomain helicase

CHD4. All of them show a high stoichiometric correlation across the NCI-60 at the protein levels, as deter-

mined by SWATH (Figures S41 and S42). Similarly, we found stoichiometric correlation across the NCI-60

for b-catenin (CTNNB1) and its membrane-associated family members CTNND1, CTNNA1, CTNNA2, as

well as EPCAM, all of which are involved in cell-cell interactions (Figures S43 and S44). Together, these ex-

amples illustrate the potential value of SWATH analyses to explore and predict stoichiometric protein

complexes.
Google-Map-Based Visualization of Cancer Signaling Pathways

Our NCI-60 proteotypes cover 648 proteins in the Atlas of Cancer Signaling Networks (ACSN), a manually

curated pathway database presenting published biochemical reactions involved in cancer using a Google-

Maps-style visualization (Figure S48) (Kuperstein et al., 2015). When mapping the mean protein expression

per cancer type, we found that, in different cell types, multiple pathways, including apoptosis, cell survival,

motility, and DNA repair, displayed a similar pattern, consistent with the fact that immortal cancer cells

retain cancer hallmarks in tissue culture (Hanahan and Weinberg, 2011). An example of a proteotypic

pattern is the delta isoenzyme of protein kinase C, i.e. PRKCD, involved in cancer progression and a

drug target (Mackay and Twelves, 2007). In agreement with PRKCD downregulation in renal clear cell car-

cinoma lines (Engers et al., 2000), PRKCD stood out in our visualization, with significantly lower protein

expression in the NCI-60 renal carcinoma cells, relative to the average expression across the NCI-60 panel.

We also tested cellular pathways using ROMA (Representation and quantification Of Module Activities)

(Martignetti et al., 2016) (Figure S48), a gene-set-based quantification algorithm. This approach revealed

substantial diversity of pathway activity between different proteotypes as evidenced by two-tailed t-tests

of activity scores (p value < 0.05). When mapping activity scores onto ACSN, some tissue specificities were
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revealed, with particular cell line proteotypes displaying distinct patterns. For instance, the activity of

apoptosis (with both caspases and apoptosis genes modules) was found significantly higher in ovarian

cell lines (Table S5). Although there are only two prostate cancer cell lines in the panel, our analysis was

able to highlight modules including ‘‘AKT-mTOR’’ and ‘‘Apoptosis,’’ whose differential activity can be

attributed to HSP90AA1 and PRDX. The latter protein has been independently reported to be overex-

pressed in prostate tumors (Ummanni et al., 2012).

Drug Response Predictions

The SWATH proteotypes covered 105 established protein targets for FDA-approved anti-cancer com-

pounds, 661 protein targets annotated in DrugBank (Law et al., 2014) (including 68 drug-metabolizing en-

zymes, 5 drug carriers, and 15 drug transporters), 694 proteins linked with human diseases (Law et al., 2014;

Uhlen et al., 2015), 58 protein kinases, 2 topoisomerases (TOP1 and TOP2b), and 9 tubulins. Some kinases

were found to be broadly expressed with high abundance across cell lines, includingMST4 andWNK1 (Fig-

ure S49), consistent with previous reports regarding their abundance (Huang et al., 2007; Lin et al., 2001).

Other kinases were highly expressed in specific cell lines, for example, EGFR in the breast cancer cell line

MDA-MB468, ERBB2 in the SKOV3 ovarian cell line, and CDK6 in leukemia MOLT4 cells, in agreement with

previous studies using antibody-based methods (Uhlen et al., 2015; Xu et al., 2005). TOP1, TOP2b, and tu-

bulins tended to be expressed across cell lines, consistent with their ubiquitous functions.

To assess drug response prediction, we used two main methods, an automated regression-based pipeline

and a complementary interactive analysis for developing regression models (a functionality easily acces-

sible to readers using CellMinerCDB, discover.nci.nih.gov/cellminercdb). In both cases, drug response

was predicted as a weighted sum of selected feature values, where the signs andmagnitudes of the feature

weights indicate the direction and strength of feature influence, respectively. For the automated pipeline,

we used the elastic net regression algorithm to select model features. The interactive approach involved

examination of individual features that correlate with drug response (i.e. univariate models), along with fea-

tures selected using the LASSO algorithm. These were integrated with experimentally established features

and then assessed using the univariate and multivariate (regression models) analysis tools of the

CellMinerCDB website.

Complementarity of the SWATH Proteotype with Genomic Measurement for Drug Response

Predictions

First, we investigated the utility of the SWATH-based proteotype with existing genomic and transcriptomic

features for 158 FDA-approved or investigational compounds in CellMiner (Luna et al., 2015; Rajapakse

et al., 2018; Reinhold et al., 2012; Shankavaram et al., 2009) (Figure 3A, Table S6). A number of these com-

pounds have been screened multiple times as they were submitted independently to the NCI-DTP and/or

served as positive controls. Drugs are given unique NSC (National Service Center) identifiers for each sub-

mission to the DTP NCI-60 screen (Reinhold et al., 2012), and 47 of the compounds are represented by mul-

tiple replicates. For instance, doxorubicin is represented by two independent NSC numbers, 123127 and

759155, with Pearson correlation of 0.962 (p = 6 3 10�34), validating data reproducibility. Each of the com-

pounds is categorized by mechanism-of-action annotation (Figure 3A). The largest group of drugs is DNA

damaging agents (including DNA alkylating and cross-linking agents, DNA synthesis and topoisomerase

inhibitors).

Using the elastic net algorithm (Barretina et al., 2012; Garnett et al., 2012; Rajapakse et al., 2018), we devel-

oped multivariate linear models to predict the NCI-60 response for each compound based on selected

genomic, transcriptomic, and SWATH proteomic features. The Pearson’s correlation between observed

drug response values and leave-one-out cross-validation-predicted response values was applied to eval-

uate the performance of each predictive dataset. As different numbers of features were measured for

each omics dataset, two strategies were adopted in the modeling analyses. In one case, we used all omics

features, with and without the SWATH proteotype, as inputs to evaluate their general performance (see

Methods). In the second, we selected 1,566 features that were available for all three molecular data types

(denoted as common features). In both cases, we obtained models for 224 (93%) of the drugs (with

adequate numbers of responsive lines). The predictive power achieved with all features was slightly higher

than that obtained using the common features for all three data types (Figure 3B); a likely reason for this is

that the latter excluded some genomic and transcriptomic features not detected at the protein level. Here,

we focus on the analysis derived from all available molecular features (Figures 3H and S50, Table S7).
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Figure 3. Prediction of Drug Responsiveness Using the NCI-60 Proteome

(A) Workflow for drug responsiveness prediction. Drug mechanism categories are shown.

(B) Distribution of predictive power (Pearson’s correlation of cross-validation predicted vs. observed response) for 240

compounds using all molecular features (All) versus common features (Common) available for all molecular data types.

(C) Distribution of predictive power for molecular features (i.e. gene expression and mutation profiles) with and without

the SWATH proteotype.

(D) Pearson correlation coefficient distribution of drug responsiveness predicted with and without SWATH data. p value

for Kolmogorov–Smirnov test (two-sided, two-sample) was computed.

(E) Venn diagram of drugs successfully modeled using elastic net with the SWATH data containing 3,171 proteins

(SW3171) and the DDA data based on iBAQ (DDA-iBAQ) and LFQ (DDA-LFQ).

(F) Venn diagram of protein predictors using the SWATH and DDA datasets.
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Figure 3. Continued

(G) Distribution of predictive improvement using the SWATH proteotype within each mechanism class.

(H) Predictive power of different omics data combinations for the activity of 20 FDA-approved compounds based on

elastic net modeling of the drug response. Each row indicates compound-specific results using gene expression and

mutation input data alone or in combination with proteomic abundances; each column represents a compound. The color

indicates the predictive power, measured by Pearson correlation of cross-validation predicted and observed drug

response values. The top and bottom 10 drugs by difference of the absolute value of predictive power are shown.

Columns specifying compound-specific response prediction accuracies are sorted by mechanism of action and whether

the inclusion of the SWATH data improved the overall model.
We identified several validated predictors for drug response. For instance, mRNA expression of SLFN11

was the most dominant indicator of sensitivity to a number of DNA-targeted compounds (including

FDA-approved drugs spanning platinum drugs, topoisomerase inhibitors, alkylating agents, PARP inhibi-

tors, andDNA synthesis inhibitors), in agreement with recent reports (Barretina et al., 2012; Rajapakse et al.,

2018; Zoppoli et al., 2012) (Table S7). This pipeline generated models for 224 compounds (Figure S50, Ta-

ble S7). The results of these models, summarized in Figures 3G and 3H, show that predictive improvement

using SWATH data was achieved across the mechanisms of actions analyzed. Given the relatively small

sample size, it was not surprising that accurate predictive models could not be found for every drug (Fig-

ure 3G), particularly those with limited numbers of responsive cell lines amid a diversity of cancer types. The

SWATH-MS-derived proteotypes displayed a higher percentage of predictive features than mutations and

transcripts. Twelve percent of SWATH features were selected in one or more predictive models, whereas

the corresponding proportions were 2% for mutation features and 6% for transcript expression features

(Table S7). The responsiveness of 49 screened drugs (22%) was best predicted with SWATH data, and 83

compounds (37%) were best predicted by combining SWATH data with transcripts and mutational data.

Through an examination of predictive gain by mechanism-of-action (Figure 3G), we made a few notable

observations. Out of six HDAC inhibitors, four showed improvement using the SWATH feature set making

it the most improved mechanism category; this observation should be taken with caution given the limited

number of compounds. Kinase inhibitors were one of the least improved categories, but this observation

should be revisited using future phospho-proteomic datasets, which would include additional markers of

kinase regulation (Ardito et al., 2017; Johnson, 2009). Lastly, the diverse set of compounds in the ‘‘Other’’

category also showed predictive improvement with the SWATH features and merits further future study.

The remaining categories show a largely even distribution in predictive improvement. Next, we compared

the distributions of predictive power as measured by Pearson correlation coefficients for models derived

with and without the inclusion of SWATH features. The SWATH-included distribution is wider, but spans

a comparable range of (higher-accuracy-associated) positive correlations relative to the strictly genomic

feature-based distribution (Figures 3C and 3D). Based on these analyses, we conclude the complemen-

tarity value of the SWATH proteotype with genomic features.

Exploration of the SWATH data can also reveal secondary predictors of drug response. The protein kinase

inhibitor vemurafenib (VEM, NSC 761431) yielded a multivariate model where the most prominent SWATH

feature was the expression level of LAMTOR3. Although the BRAF V600E mutation is a highly significant

predictor of vemurafenib activity in the NCI-60 (Abaan et al., 2013), we speculate that LAMTOR3 may be

a secondary drug response predictor, although further studies outside of the scope of the current work

are necessary for validation. LAMTOR3 (MP1) is part of an endosomal scaffolding complex interacting

with components of the RAF/MEK/ERK mitogenic signaling pathway. LAMTOR3 binds MEK1 and ERK1,

facilitating activation of the latter protein (Schaeffer et al., 1998). Elevated LAMTOR3 protein expression

was correlated with vemurafenib resistance (r = 0.44), consistent with the hypothesis that LAMTOR3 has

the capacity to enhance RAF/MEK/ERK pathway signaling downstream of RAF. Increased protein expres-

sion of LAMTOR3 was observed in two BRAF mutant cell lines, SK-MEL-5 and LOXIMVI, which are relatively

resistant to vemurafenib (Abaan et al., 2013). By contrast, the two cell lines with the lowest LAMTOR3 pro-

tein expression (MALME-3M and HT29) were notably among the most sensitive to vemurafenib.

We also compared the predictive power of the DDA data from the literature (Gholami et al., 2013) with the

SWATH data. Although the DDA data were able to generate multivariate models for a comparable number

of drugs (Figure 3E), the number of selected protein expression predictors was lower than in the SWATH

data, with some overlap (Figure 3F). The DDA datasets (Gholami et al., 2013) analyzed using iBAQ and LFQ

algorithms displayed moderate overlap with each other in terms of selected model predictors (Figure 3F).
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Examples of Novel SWATH Predictors for NCI-60 Drug Responses Using CellMinerCDB

Our automated analysis along with our interactive exploration with CellMinerCDB (Rajapakse et al., 2018)

produced multiple predictors with plausible drug response associations. For instance, ABCC4 was a

SWATH predictor for resistance to alkylating agents, including chlorambucil (NSC 3088), uracil mustard

(NSC 34462), and nitrogen mustard (NSC 762) in highly ranked models (by predictive power), consistent

with its established role as a drug efflux pump (Borst and Elferink, 2002). Across molecular features (muta-

tion, transcript, or protein expression), 14 ATP-binding cassette family transporters were predictive of

sensitivity to 51 compounds. P-glycoprotein (encoded by ABCB1), which mediates resistance to a broad

range of anticancer agents (Robey et al., 2018), predicted resistance to widely used chemotherapeutic anti-

cancer drugs including doxorubicin (r = 0.38; p = 0.003; Figure S45B) and taxol (r = 0.43; p = 0.00086; Fig-

ure S45D), as well as to the HDAC inhibitor romidepsin (depsipeptide; r = 0.41; p = 0.0015; Figure S45C) and

the HSP90 inhibitor alvespimycin. ABCB1 protein expression across the NCI-60 was also positively corre-

lated with its transcripts (r = 0.44; p = 0.00044; Figure S45A). Of note, the BCR-ABL inhibitor nilotinib

was correlated with the ABC transporter protein (ABCF1) (Table S7). These results confirm the importance

of measuring ABC transporters to optimize the use of anticancer agents and warrant further investigation.

Another negatively weighted SWATH predictor is CTNND1 for several compounds targeting DNA,

including daunorubicin (NSC 756717), valrubicin (NSC 246131), and carmustine (NSC 409962). CTNND1 en-

codes d-catenin, which promotes cell survival through activation of theWNT signaling pathway (Tang et al.,

2016). Inhibition of apoptosis (Chen et al., 2001) plausibly confers drug resistance in cells with high

CTNND1 protein. In addition, as discussed previously and shown in Figure S43, CTNND1 is stoichiomet-

rically correlated with b-catenin (CTNNB1), a-catenins (CTNNA1 and CTNAA2), and EPCAM, the epithelial

cell adhesion molecule, indicating a potential role of plasma membrane signaling in cellular response to

DNA-targeted agents. Consistent with this hypothesis and the potential predictive value of b-catenin, anal-

ysis performed in CellMinerCDB showed significant negative correlation with etoposide (r = �0.518, p =

0.000032), topotecan (r = �0.3, p = 0.02; Figure 4), melphalan (r = 0.534, p = 1.34 3 10�6), chlorambucil

(r = �0.526, p = 1.85 3 10�6), and cisplatin (r = �0.366, p = 0.00254; Figure S48). EPCAM expression was

also significantly predictive of cisplatin resistance (r = �0.44, p = 0.00047; Figure S44) as was EPCAM pro-

moter methylation (r = �0.52, p = 2 3 10�5; Figure S44).

As noted above, CellMinerCDB (discover.nci.nih.gov/CellMinerCDB) allows biologically plausible drug

response correlates to be integrated within exploratory multivariate regression models. Figures 4 and

S44 provide two examples using SWATH measurements. In the first, cisplatin is used as the response var-

iable. The top response determinants are b-catenin and EPCAM, as discussed above (Figure S44). In the

second example, the top predictive response determinants for the clinical topoisomerase I inhibitor top-

otecan are POLD1, RNASEH2B, and BAX (Figure 4A). POLD1 is the large subunit of the replicative polymer-

ase d and RNaseH2B one of the subunits of RNaseH2, which removes ribonucleotides misincorporated dur-

ing DNA synthesis. The higher sensitivity of cells with high POLD1 and high RNaseH2 is likely reflective of

hyperactive replication, which determines response to TOP1 inhibitors such as topotecan (Pommier et al.,

2016). The value of b-catenin (CTNNB1) as a negative (resistance) predictor can be related to its anti-cell

death activity (see prior section). Conversely, the identification of BAX, the mitochondrial pro-apoptotic

effector, as a positive predictive (sensitivity) determinant at the protein level (Figure 4A) is consistent

with apoptotic propensity shaping the response to DNA damaging drugs. Together, Figures 4B and 4C

show this to be a predictive multivariate model at the protein, but not the RNA level, incorporating estab-

lished features associated with replication stress and apoptosis.
DISCUSSION

Complementarity of protein and transcript data (Liu et al., 2016; Mertins et al., 2016; Zhang et al., 2014,

2016) can be expected to reveal new biological insights that are not apparent from the commonly usedmu-

tation and transcriptome profiles and which could be applied to enhance precision medicine. However,

due to technical limitations, the acquisition of proteomic cohort datasets has been challenging. Here, using

the NCI-60 cell line compendium, we demonstrate the ability of the PCT-SWATH proteomic technique to

consistently quantify over 3,000 proteins across each of the NCI-60 cell lines measured in duplicate with a

realistic turnaround. The data were acquired in approximately 30 working days on a single mass spectrom-

eter, and for each sample measurement ca. 1 microgram of total peptide mass was consumed. This has

been enabled by the pressure cycling technology, which minimizes sample consumption and the data-in-

dependent MS data acquisition using SWATH-MS (Guo et al., 2015).
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Figure 4. Pedictive Protein Biomarkers for Topotecan (NSC609699) Activity

(A) The snapshots from discover.nci.nih.gov/CellMinerCDB show results obtained with the ‘‘Multivariate Analyses’’ tool of

CellMinerCDB using topotecan as ‘‘Response Identifier’’ for the query.

(B and C) Plots of the observed response values for topotecan (NSC 609699) (y axis) versus the 10-fold cross-validation

predicted response values (x axis), using SWATHmeasurements for predictors (B) and gene expression-based predictors

(C).
Because of their extensive omic annotation and drug databases including over 21,000 publicly accessible com-

pounds, the NCI-60 are a unique platform for testing new technologies and exploring determinants and pre-

dictors of drug response (Abaan et al., 2013; Monks et al., 2018; Rajapakse et al., 2018; Reinhold et al., 2012,

2019; Zoppoli et al., 2012). In addition, most of the NCI-60 cell lines are widely used for cell biology and phar-

macology (MCF-7, MDA-MB231, HCT116, HCT15, HT29, HL60, CCR-CEM, and K562 to name a few). Hence,

providing MS data for over 3,000 proteins and making the data available and easy to mine through

CellMinerCDB will provide a unique resource for the scientific community worldwide. This is especially true

because of the overlap between the cell lines in the NCI-60 and the Broad-MIT (CCLE/CTRP) and the MGH-

Sanger (GDSC) (55 and 44 of the 60 cell lines, respectively) (Rajapakse et al., 2018). The proteome of the

NCI-60 has been previously measured by sample fractionation and DDA-MS analysis of over 1,000 fractionated

samples (Gholami et al., 2013). However, in this early study with basic MS technology, data acquisition for each

cell line required an average of about 29 hMS instrument time. By contrast, our SWATH analyses required about

140 min MS instrument time, demonstrating the feasibility of extensive human proteotypes with a throughput

almost comparable with genomic and transcriptomic analyses and its potential translation to tumor material in

the future. Our integration of the SWATH data into CellMinerCDB (discover.nci.nih.gov/cellminercdb) also en-

ables the user to readily check the SWATH data for concordance with a small number of proteins measured by

RPPA (Nishizuka et al., 2003) (see the example for PCNA in Figure S38).
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Two aspects of our workflow ensure robust and quantitatively accurate protein expression measurements.

First, we obtained technical duplicates for the entire set of NCI-60 proteotypes. This was feasible due to the

unparalleled high sample-throughput of the PCT-SWATHmethodology, which is gaining popularity in pro-

teomic profiling of clinical specimens. Additionally, we developed an expert system software to further

curate peptide and protein identification and quantification. Applying stringent criteria, 3,171 proteins

were included for further analyses and are made available through CellMiner (discover.nci.nih.gov/

cellminer and discover.nci.nih.gov/cellminercdb). The raw MS signal for each of the quantified proteins,

in each cell line, was inspected by the expert system, simulating manual inspection, and is available for vi-

sual inspection in the Supplemental Information. Because the NCI-60 cell lines are widely used in cell

biology, we anticipate the broad utility of these highly curated proteomic data. Additionally, our rapid pro-

teotype acquisition pipeline using PCT-SWATH requires little biological material, making it suitable for

clinical settings and in precision medicine efforts (Guo et al., 2015; Shao et al., 2015, 2016).

Compared with other omics data, proteotypes offer unique insights into the coordinated expression of

protein complexes (Dudley et al., 2005; Fraser and Plotkin, 2007; Ori et al., 2016; Wang et al., 2012), which

are dysregulated in many diseases, especially cancer (Le, 2015). Our high-quality proteomic data allowed a

systematic investigation of the composition of 101 protein complexes in 60 cell lines. We expect that this

represents a proof-of-principle for a generic, high-throughput approach, applicable to larger cancer cell

line databases and clinical specimens (Guo et al., 2015), for exploring biological networks and the associ-

ation of defective protein complexes with diseases and drug responses. In addition, using CellMinerCDB

(discover.nci.nih.gov/cellminercdb) casual users can test the stoichiometric expression of proteins

belonging to small complexes. Several examples are provided in the manuscript including dimeric com-

plexes (XRCC6/KU70 and XRCC5/KU80; Figures 2E and S36), trimeric complexes (RPA1, RPA2 and

RPA3), larger complexes such as the chromatin remodeling NuRD complex (Figures S37, S41, and S47),

the b-catenin plasma membrane complexes (Figure S43), and replication complexes including MCM heli-

cases, RPAs, PCNA, RFC4, RFC2, and FEN1 (Figures S37–S39), as well as stoichiometrically coordinated

RNA binding protein complexes, such FUS and the RNase A DHX9 (Figures S35 and S40).

The NCI-60 panel has enabled many landmark discoveries, and often emerging technologies are first tested on

this panel due to its diversity and depth of surrounding knowledge (Abaan et al., 2013; Barretina et al., 2012;

Garnett et al., 2012; Reinhold et al., 2019; Shoemaker, 2006; Weinstein, 2012). Each cancer cell line in the

NCI-60 has been tested against tens of thousands of compounds, including the FDA-approved and investiga-

tional drugs featured in our analyses.With the addition of the SWATHproteomic data, theNCI-60 remains posi-

tioned as one of the most comprehensive models for cancer research and drug discovery. The NCI-60 uniquely

enabled our thorough, integrative analysis of different molecular profiles (genomic, transcriptomic, and prote-

omic) in predicting drug responsiveness. Our findings strengthen the body of work, highlighting the importance

of integrative omics approaches in understanding drug mechanisms, and establish the benefit of large-scale

proteomic measurements. Therefore, we expect our study to become a seminal work in the area of pharmaco-

proteomics, the benefit of which will grow with anticipated expansion of sample size, proteomic coverage

including extension to phosphoproteomic expression, as well as extension to mouse models (Gao et al.,

2015) and human specimens (Guo et al., 2015).

The existing SWATH data specifically enabled the use of advanced analysis techniques to produce multi-

variate models of drug response. Examples of multivariate analyses using CellMinerCDB are provided for

topotecan and cisplatin (Figures 4 and S44) with predictive protein biomarkers including the sensitivity

signature of the proapoptotic protein BAX and a resistance signature centered around b-catenin. Yet, it

has been challenging to identify such signatures, and the combination of proteomic, transcriptomic, and

mutation data will likely be necessary to generate predictive signatures for precisionmedicine. Likely, a lim-

itation at the current technical level is the number of proteins identified, and their skewing toward the

higher expressed proteins. As technology improves, and a broader group of proteins is identified; it can

be anticipated that the predictive utility of the protein data will increase rapidly.

Effort was put into making our work publicly available and easily accessible through data submission to the

NCI-60 CellMiner database and an accompanying R package, rcellminer (Luna et al., 2015). We expect that

the analyses developed, including those based on the widely used LASSO and elastic net methods, will

continue to evolve and enable future studies on additional datasets and phenotypes. Although the

strengths of these methods over other related methods have been previously described (Jang et al.,
676 iScience 21, 664–680, November 22, 2019
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2014; Papillon-Cavanagh et al., 2013), the resulting models still require careful scrutiny by individual re-

searchers. The interpretation of the models developed here and by others using our pipeline, should be

guided by understanding of the biological activities of the associated predictors in the context of the

mechanisms of action for the input drugs.

Limitations of the Study

This study and the resultingdataset invite further investigation of this uniqueproteomic data resource. The anal-

ysis of protein complexes in the current study highlights the value of mining beyond transcriptomic data, at the

functionally critical proteomic level. The proteomic data of this study were acquired by the SWATH-MS technol-

ogy, a massively parallel targeting method, at an early stage in its development. Over the last years the tech-

nology has rapidly advanced in terms of the proteomic depth that it can achieve. Our observation of the com-

mon lack of correlation between mRNA and protein expression has been similarly made in tumor samples

across multiple tissue types (Kosti et al., 2016). Understanding these differences should help drive future studies

in the development of mathematical and experimental models that leverage these -omics datasets effectively.

Future investigations considering different approaches to handling the data, providing increased penetrance in

the number of genes assessed, extending the functional implications of the data, and assessing perturbed pro-

teomes in these cells will push back the current limitations of the field. Additionally, we have strived tomake our

work publicly available and easily accessible through data submission to the NCI-60 CellMiner databases

(http://discover.nci.nih.gov/and http://discover.nci.nih.gov/cellminercdb) and an accompanying R package,

rcellminer (Luna et al., 2015).Although the strengths of these methods over other related methods have been

previously described (Janget al., 2014; Papillon-Cavanagh et al., 2013), the resultingmodels still require scrutiny.

The interpretation of the models developed here, and by others using our pipeline, should be guided by an

understanding of the biological activities of the associated predictors in the context of themechanisms of action

and survival assays used for the input drugs.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The NCI-60 SWATH datasets and SWATH assay library has been deposited in PRIDE. Project Name: NCI60

proteome by PCT-SWATH; Project accession: PXD003539.

Reviewer account details:

Username: reviewer15254@ebi.ac.uk
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The protein data matrix has also been deposited in ArrayExpress. Project accession: E-PROT-2. Project

title: Proteomic profiling of NCI60 cell lines from Cancer Cell Line Encyclopedia.
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Supplementary Figures 

 

Supplementary Figure 1, Related to Figure 1. Workflow for generating the NCI-60 
proteome maps and predicting phenotypes. (A) Flowchart of experimental design. The 
NCI-60 cell pellets were divided into 12 batches, lysed and digested using the PCT method. 
The peptides were first analyzed in DDA mode to build a SWATH assay library. We also 
included DDA files from U2OS and HeLa cell digests. In total we performed 63 DDA 
injections either from whole cell lysate or fractionated samples. Each sample was analyzed in 
SWATH mode twice. The SWATH data were processed using software tools including 
OpenSWATH and DIA-expert in sequence. Our data were deposited in several public 
databases including CellMiner 2.0. Subsequently, we developed a computational workflow to 
model drug responsiveness using multiple layers of molecular data. The generation of a 
spectral library specifically for the NCI-60 cells consumed ca. 10 working days. For studies 
of this type this step is optional because similar results can be obtained from the use of 
publicly accessible, extensive human spectral libraries such as the pan-human library 
(Rosenberger et al., 2014). (B) raw mass spectrometric signal for the 120 SWATH runs. Total 
ion chromatography graphs are shown. The index of the 120 NCI SWATH files is explained 
in Supplementary Table 1. 
  



 
Supplementary Figure 2, Related to Figure 1. Unsupervised clustering of 6556 

protein groups identified and quantified in the NCI-60 cells. Using the SWATH library 
containing 8056 protein groups, we displayed the identified and quantified protein groups 
after unsupervised clustering of both cells and proteins based on their log10 transformed 
intensity values. 
  



 

 
Supplementary Figure 3, Related to Figure 1. Design and implementation of DIA-

expert, Related to Figure 1. (a) DIA-experts reads output data from OpenSWATH analysis 

of SWATH/DIA maps and then curates and visualizes quantitative ion chromatogram signals. 

(b) DIA-expert analyses each identified peptide precursor in a sample set. In Step ① it 

extracts ion chromatography signals for any number of fragments and the precursor ion 

chromatogram for all samples. In Step ②, it selects reference sample(s) from the sample set 

and refines non-contaminated chromatographic signals by learning the signal characteristics 

of the reference sample(s). In step 3 the system performs pair-wise comparisons of the 

reference sample(s) and a sample to be quantified based on the refined fragments ion set. 

Last, replicates of each sample and proteotypic peptides from the same protein were 

considered to exclude unreliably quantified peptides and minimize missing values for protein 

quantification across the entire data set.  

 
 



 

Supplementary Figure 4, Related to Figure 1. Quantitative accuracy of the NCI-60 
proteome as a function of the number of peptides quantified per protein. (a) Number of 
proteins quantified when minimally 1, 2, 3 and 4 peptides were quantified per protein. The R2 
values of technical replicates are computed. (b) Distribution of protein numbers based on 
increasing number of peptides. (c) The heatmap scatter plot of proteins quantified in two 
technical replicates when the minimal peptide number is limited to 1, 2, 3 and 4. 

 
 
 
 
  



 
 

Supplementary Figure 5, Related to Figure 2. Count of proteins quantified in 
increasing number of cells. This plot shows the number of proteins quantified in the NCI-60 
cells. DDA-LFQ denotes the LFQ-processed DDA data of the NCI-60 cells. SW3171 means 
the SWATH data set presented in this study. Most of the SW3171 proteins were quantified in 
all 60 cells. In DDA-LFQ data set (Gholami et al., 2013b), highest numbers of IPI protein 
groups were quantified in 1 and 59 cells.  
 
 
 
 
 
 
 
  



 

Supplementary Figure 6, Related to Figure 2. Comparison of 8 representative 
proteins which have been consistently quantified across nearly all NCI-60 cell lines by 
DDA. The data are shown in bar plots. Protein intensity values are log10 scaled 



 

Supplementary Figure 7, Related to Figure 2. Comparison of 8 representative 
proteins which have been consistently quantified across nearly all NCI-60 cell lines by 
SWATH. The data are shown in scatter plots. Protein intensity values are log10 scaled. 

 

 

 

 

 



 

Supplementary Figure 8, Related to Figure 2. Bar plots for P62805, which is 
quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

  



 

Supplementary Figure 9, Related to Figure 2. Bar plots for Q562R1, Q9H0A0, 
O60271, P16401, Q6UXV4, Q8WUF5, Q9NXV6 and Q12905, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 10, Related to Figure 2. Bar plots for Q9NSI2, P28066, 
P49593, P19338, P62899, P62917, P62841, and Q9Y4A5, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 11, Related to Figure 2. Bar plots for P62875, O14735, 
P51991, P18621, Q969G3, P46778, P08621, and P50151, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 12, Related to Figure 2. Bar plots for Q5T4S7, P22626, 
P10809, Q13541, P62753, Q9BUQ8, Q13619 and Q8N392, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 13, Related to Figure 2. Bar plots for Q15154, Q8NC51, 
Q9NYF8, Q99816, Q96FS4, P46783, Q16543, O14964, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 14, Related to Figure 2. Bar plots for Q8WWY3, Q9UJB3, 
O75170, Q9GZZ1, P56545, Q9BVL2, P61313 and Q9H4A3, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 15, Related to Figure 2. Bar plots for Q9Y5B9, Q436B4, 
P05204, Q9BQ61, Q8NB16, Q8TDB6, Q6UXH1, and Q69YN2, which are quantified 
cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 16, Related to Figure 2. Bar plots for Q9NUQ8, Q96B26, 
O15460, Q9NVP1, P39D23, Q9Y3B4, Q12906, and P51858, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 17, Related to Figure 2. Bar plots for Bar plots for P24386, 
Q7Z3J2, Q9NVT9, Q00403, Q94905, Q9H6R4, O15066, and Q6RFH5, which are 
quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

Supplementary Figure 18, Related to Figure 2. Bar plots for P57772, P09497, 
Q86X12, O14497, P84022, O15427, Q8WYA6, and P359249, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 19, Related to Figure 2. Bar plots for P20073, Q7L2J0, 
Q16539, Q3ZCQ8, P53367, Q8IWA0, 043815 and P16403, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 20, Related to Figure 2. Bar plots for Q15582, P98160, 
P49189, Q9Y3Y2, Q02218, Q8WX93, P41227, and Q9UNX4, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 



 

 

 

Supplementary Figure 21, Related to Figure 2. Bar plots for A0AV96, P22087, 
Q02543, Q8WUH6, Q13190, Q8N8S7, Q5QJE6 and P23588, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 22, Related to Figure 2. Bar plots for Q9Y2W1, Q8WUA4, 
P21399, Q13084, P53602, O43272 and P20962, which are quantified cross all NCI-60 cell 
lines by SWATH but not quantified by DDA. 

  



 

Supplementary Figure 23, Related to Figure 2. Bar plots for P67809, P46087, 
Q96IR7, O75494, P10412, Q96T37, O95983, and Q96I25, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

Supplementary Figure 24, Related to Figure 2. Bar plots for P35680, Q9C0C4, 
Q86U90, Q9Y6B6, Q9UHL4, P62244, Q96D53 and Q96EL3, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 25, Related to Figure 2. Bar plots for Q14008, Q9NWY4, 
Q9BZX2, Q9NR50, and Q02040, which are quantified cross all NCI-60 cell lines by 
SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 26, Related to Figure 2. Scatter plots for P62805, Q562R1, 
Q9H0A0, O60271, P16401, Q6UXV4, Q8WUF5, Q9NXV6 , Q12905,Q9NSI2, P28066, 
P49593, P19338, P62899, P62917, P62841, , Q9Y4A5,P62875, O14735, and P51991， 

which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 



 

Supplementary Figure 27, Related to Figure 2. Scatter plots for P18621, Q969G3, 
P46778, P08621, P50151, Q5T4S7, P22626, P10809, Q13541, P62753, Q9BUQ8, Q13619 , 
Q8N392, Q15154, Q8NC51, Q9NYF8, Q99816, Q96FS4, P46783, and Q16543, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 

 



 

Supplementary Figure 28, Related to Figure 2. Scatter plots for O14964,Q8WWY3, 
Q9UJB3, O75170, Q9GZZ1, P56545, Q9BVL2, P61313, Q9H4A3,Q9NPE3, Q06023, 
Q92576, Q969S3, Q9H089, Q13435, Q8N5N7, Q9Y5B9, Q436B4, and P05204, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 

 

 



 

Supplementary Figure 29, Related to Figure 2. Scatter plots for Q9BQ61, Q8NB16, 
Q8TDB6, Q6UXH1, Q69YN2, Q9NUQ8, Q96B26, O15460, Q9NVP1, P39D23, Q9Y3B4, 
Q12906, , P51858, P24386, Q7Z3J2, Q9NVT9, Q00403, Q94905, Q9H6R4, and O15066, 
which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 

 



 

Supplementary Figure 30, Related to Figure 2. Scatter plots for Q6RFH5, P57772, 
P09497, Q86X12, O14497, P84022, O15427, Q8WYA6,  P359249, P20073, Q7L2J0, 
Q16539, Q3ZCQ8, P53367, Q8IWA0, 043815 , P16403,Q15582, P98160, and P49189, 
which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 

 



Supplementary Figure 31, Related to Figure 2. Scatter plots for Q9Y3Y2, Q02218, 
Q8WX93, P41227, Q9UNX4, A0AV96, P22087, Q02543, Q8WUH6, Q13190, Q8N8S7, 
Q5QJE6 , P23588,Q9Y2W1, Q8WUA4, P21399,Q13084, P53602, and O43272, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 



Supplementary Figure 32, Related to Figure 2. Scatter plots for P20962,P67809, 
P46087, Q96IR7, O75494, P10412, Q96T37, O95983, Q96I25,P35680, Q9C0C4, 
Q86U90, Q9Y6B6, Q9UHL4, P62244, Q96D53, Q96EL3, Q14008, Q9NWY4, Q9BZX2, 
Q9NR50, and Q02040, which are all quantified cross all NCI-60 cell lines by SWATH 
but not quantified by DDA. This figure shows the data completeness difference of the two 
data sets. 



Supplementary Figure 33, Related to Figure 2. Access to NCI-60 proteotype in 
Cellminer. To facilitate data access, visualization, and comparison with other forms of 
genomic and pharmacological data for the NCI-60 cancer cell lines, we have incorporated the 
SWATH data within CellMiner 4 5. The CellMiner web site allows the data to be retrieved or 
used in several ways 6.  (A) The “Download Data Sets” tab allows either the total 3,171 
proteins, or the 22,554 peptides data sets to be downloaded. This data will primarily be of use 
in computational biology pipelines. The “Query Genomic Data” tab allows up to 150 proteins 
or peptides to be accessed (using the “Gene” or “Peptide” pull downs), queryable by gene 
name or peptide peak identifier, chromosomal or genomic location. Data is sent in both Excel 
(.xls) and text (.txt) format. The “NCI-60 Analysis Tools” tab (A) provides “Cell line 
signatures”. To obtain “Cell line signatures” for genes, select “Cell line signature” in Step 1, 
and then “Protein SWATH values”. In Step 2, up to 150 genes of interest may be input by 
either typing in the gene names in the “Input the identifier” box, or uploading them as a text 
or Excel file using the “Upload file” radio button. In Step 3, enter your e-mail address, and 
click “Get data”. Results will be sent by e-mail for each gene, with a link to download the 
results. This file contains three worksheets: i) tabular mean centered protein levels ratios as a 
both a bar plot and tabular data, and the peptide peak information for that gene ii) “Bin 
protein levels” with a histogram of the protein levels and iii) and “Footnotes”. (B) provides 
examples of three genes of interest. These “Cell line signatures” can also be used as input for 
the Pattern Comparison tool (also within the NCI-60 Analysis tools section) which provides 
correlated molecular and compound activity data. All available gene and peptide identifiers 
are available as a list within the “Available identifiers and drug mechanism of action 
definitions” as a download within the “NCI-60 Analysis Tools” tab. 



 

Supplementary Figure 34, Related to Figure 2. CellminerCDB snapshot views of 
three genes with highest correlation between expression in SWATH and transcriptome 
data: Myristyolated Alanine-Rich C Kinase (MARCKSL1), Galectin 3 (LGALS3) and 
Integrin b1 (ITGB1) (see Supplementary Table 3). Data are snapshots from 
https://discover.nci.nih.gov/CellMinerCDB. 



 

Supplementary Figure 35, Related to Figure 2 and 4. CellminerCDB view of the 
stoichiometric relationship of the expression of two RNA binding proteins DHX9 
(RNAse A) and FUS (Fused in Sarcoma) in SWATH and transcriptome data. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The high stoichiometric 
correlation for both DHX9 and FUS across the NCI-60. B. The lower stoichiometric 
relationship between DHX9 and FUS transcripts. C. The lack of correlation between DHX9 
protein and transcripts across the NCI-60. D. The low stoichiometric relationship between 
FUS protein and transcripts across the NCI-60. 



 

Supplementary Figure 36, Related to Figure 2. CellminerCDB view of XRCC5 and 
XRCC6 expression in SWATH and transcriptome data. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The high stoichiometric 
correlation for both Ku subunits XRCC6 (KU70) and XRCC5 (KU80) across the NCI-60. B. 
The lower stoichiometric relationship between XRCC6 and XRCC5 transcripts. C. The lack 
of correlation between XRCC6 protein and transcripts across the NCI-60. D. The lower 
stoichiometric relationship between XRCC5 protein and transcripts across the NCI-60. 
 

 

 

 

 

 



  

Supplementary Figure 37, Related to Figure 2. CellminerCDB snapshot views 
showing co-expression of replication proteins: RPA3 with RPA2 (A) and MCM5 (C) 
whereas transcripts do not show significant correlations (C-D). Data are snapshots from 
https://discover.nci.nih.gov/CellMinerCDB. 
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Supplementary Figure 38, Related to Figure 2. CellminerCDB snapshots showing 
co-expression of replication proteins determined by SWATH and detailing the 
coexpression of FEN1 with PCNA and of PCNA with the replication helicase protein 
MCM3. A. The “Compare pattern” tool was used with PCNA as the “x-axis entry”. 
Snapshots from https://discover.nci.nih.gov/CellMinerCDB showing only the top correlates 
with RPA3 including MCM3 and FEN1. B. Stoichiometric relationship between PCNA and 
FEN1 proteins across the NCI-60. C. Stoichiometric relationship between PCNA and MCM3 
proteins across the NCI-60. 

A

B C



 

Supplementary Figure 39, Related to Figure 2. CellminerCDB snapshot showing 
reproducible expression of PCNA determined by SWATH and RPPA (Reverse Phase 
Protein Array). The snapshot from https://discover.nci.nih.gov/CellMinerCDB shows PCNA 
protein levels across the NCI-60. 

 

 

 

 

 

 



 

Supplementary Figure 40, Related to Figure 2 and 4. CellminerCDB snapshot of 
FUS and DHX9 transcript expression (https://discover.nci.nih.gov/CellMinerCDB) across 
the MGH-Sanger cell lines. 

 



 

Supplementary Figure 41, Related to Figure 2. Snapshot views showing co-
expression of the NuRF (Nucleosome Remodeling Factors) proteins determined by 
SWATH (top) and transcripts (bottom). The “Cross-correlations” tool of CellMiner was 
used with the listed proteins or genes (left column). Snapshots from the Excel files obtained 
from http://discover.nci.nih.gov/cellminer. 
 

 

 

 

 

 

 

 

 

 

 

 

SWATH
Pearsons correlation
Identifier RBBP7 RBBP4 MTA3 MTA1 HDAC2 HDAC1 GATAD2B GATAD2A MBD3 CHD4 ZMYND8
RBBP7 1 0.226 -0.031 0.064 -0.01 0.197 0.127 -0.053 -0.019 0.12 -0.136
RBBP4 0.178 1 -0.091 0.245 0.271 0.539 0.073 0.18 0.168 0.343 -0.063
MTA3 -0.245 -0.099 1 0.325 0.039 0.076 -0.036 -0.254 -0.159 -0.083 0.016
MTA1 0.228 0.047 -0.173 1 0.457 0.214 0.147 -0.017 0.125 0.106 -0.364
HDAC2 0.133 0.026 -0.043 0.518 1 0.419 -0.067 0.307 0.286 0.351 -0.118
HDAC1 0.391 0.497 -0.127 0.189 -0.004 1 0.05 0.36 0.049 0.497 0.027
GATAD2B 0.24 0.29 -0.088 0.226 0.219 0.271 1 0.218 -0.069 0.366 0.047
GATAD2A 0.274 0.179 0.061 0.306 0.277 0.294 0.095 1 0.248 0.451 0.297
MBD3 0.316 0.447 -0.086 0.443 0.313 0.434 0.438 0.421 1 0.171 -0.084
CHD4 0.269 0.238 -0.201 0.311 0.138 0.382 0.402 0.419 0.506 1 0.316
ZMYND8 ND ND ND ND ND ND ND ND ND ND 1

Transcripts
Pearsons correlation
Identifier RBBP7 RBBP4 MTA3 MTA1 HDAC2 HDAC1 GATAD2B GATAD2A MBD3 CHD4 ZMYND8
RBBP7 1 0.226 -0.031 0.064 -0.01 0.197 0.127 -0.053 -0.019 0.12 -0.136
RBBP4 0.226 1 -0.091 0.245 0.271 0.539 0.073 0.18 0.168 0.343 -0.063
MTA3 -0.031 -0.091 1 0.325 0.039 0.076 -0.036 -0.254 -0.159 -0.083 0.016
MTA1 0.064 0.245 0.325 1 0.457 0.214 0.147 -0.017 0.125 0.106 -0.364
HDAC2 -0.01 0.271 0.039 0.457 1 0.419 -0.067 0.307 0.286 0.351 -0.118
HDAC1 0.197 0.539 0.076 0.214 0.419 1 0.05 0.36 0.049 0.497 0.027
GATAD2B 0.127 0.073 -0.036 0.147 -0.067 0.05 1 0.218 -0.069 0.366 0.047
GATAD2A -0.053 0.18 -0.254 -0.017 0.307 0.36 0.218 1 0.248 0.451 0.297
MBD3 -0.019 0.168 -0.159 0.125 0.286 0.049 -0.069 0.248 1 0.171 -0.084
CHD4 0.12 0.343 -0.083 0.106 0.351 0.497 0.366 0.451 0.171 1 0.316
ZMYND8 -0.136 -0.063 0.016 -0.364 -0.118 0.027 0.047 0.297 -0.084 0.316 1



Supplementary Figure 42, Related to Figure 2. CellminerCDB snapshot showing 
stoichiometry expression of MBD3 and CHD4 determined by SWATH. The 
https://discover.nci.nih.gov/CellMinerCDB snapshot show MBD3 and CHD4 protein levels 
across the NCI-60. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Supplementary Figure 43, Related to Figure 2 and 4. CellminerCDB snapshot 
showing co-expression of cell adhesion proteins determined by SWATH. The “Compare 
pattern” tool was used with b-catenin (CTNNB1) as the “x-axis entry” 
(https://discover.nci.nih.gov/CellMinerCDB). Only the top correlates are shown among over 
3,000 proteins in the database. 
 
 

 

 

 

 

 

 

 



 

Supplementary Figure 44, Related to Figure 4. Predictive protein biomarkers for 
cisplatin (NSC119875) activity. The snapshots from 
https://discover.nci.nih.gov/CellMinerCDB show: A. Results obtained with the “Regression 
Model” tool of CellMinerCDB using cisplatin as “Response Identifier” for the query. B. 
Significant negative correlation between EPCAM protein expression determined by SWATH 
and activity of cisplatin. C. Highly significant negative correlation between EPCAM protein 
expression and EPCAM promoter methylation across the NCI-60. 
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Supplementary Figure 45, Related to Figure 4. ABCB1 (PGP; P-glycoprotein) 
protein levels across the NCI-60 and prediction of drug response. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The correlation between 
ABCB1 protein and gene expression across the NCI-60. B-D. The significant negative 
correlations between ABCB1 protein levels and response to doxorubicin, depsipeptide and 
taxol across the NCI-60. 
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Supplementary Figure 46, Related to Figure 2. CellminerCDB snapshot views 
showing co-expression of replication proteins determined by SWATH. The “Compare 
pattern” tool was used with RPA3 as the “x-axis entry”. Snapshots from 
https://discover.nci.nih.gov/CellMinerCDB showing the top correlates with RPA3. 
 

 



 
Supplementary Figure 47, Related to Figure 2. Proteins interacting with DHFR and 

MBD3. Proteins interacting with DHFR (A) and MBD3 (B) from STRING. 

  



Supplementary Figure 48, Related to Figure 3. Global cancer signaling pathway 
maps based on Atlas of Cancer Signaling Network (ACSN) pathways (Kuperstein et al., 
2015) (www. acsn.curie.fr). The annotations of the pathway map are shown in the upper 
panel. ROMA representation of the pathway activities are shown in the lower panel. 
 
 
 
 
 
 
 
 



Supplementary Figure 49, Related to Figure 3. Fifty-eight protein kinases 
quantified in the NCI-60 cell panel. Expression of 58 protein kinases, represented by log10 
transformed protein intensity values, in the NCI-60. Values are clustered without supervision 
across both proteins and cell lines. 
 

 



 

 

Supplementary Figure 50, Related to Figure 3. Predictive power of different omics 
data combinations for the activity of 224 compounds, based on elastic net (multivariate 
linear regression) modeling of the drug response. Each column indicates the input data 
gene expression and mutation alone and in combination with proteomic abundances; 
each row represents a compound. The color indicates the predictive power, measured by 
Pearson correlation of cross-validation predicted and observed drug response values. 
Rows specifying compound-specific response prediction accuracies are sorted by 
mechanism of action and additional annotations are provided 1) whether the inclusion 
of the SWATH data improved the overall model and 2) the clinical status of the 
compound whether FDA approved or in clinical trial.  

 
 



Supplementary Table Legends 

All the supplementary tables are provided as separate Excel spreadsheet. 

Supplementary Table 1, Related to Figure 1. Quantitative proteome maps of the NCI-60 
cell lines. (A) Information for PCT-SWATH analysis of the NCI-60 cells (B) List of peptide 
precursors appeared in the library. (C) Quantitative values of 22,554 peptide precursors in the 
NCI-60 cells in duplicates. (D) Quantitative values of 3,171 proteins in the NCI-60 cells in 
duplicates. (E) Averaged protein intensity in the NCI-60 cells. 

Supplementary Table 2, Related to Figure 2. Count of proteins in each cell line in the 
DDA data and the SWATH data. This table shows the count of IPI protein group 
number from the DDA data set quantified using iBAQ and LFQ algorithms 1, and the 
count of SwissProt proteotypic proteins from the SWATH data as reported in this 
data(Gholami et al., 2013a). 

Supplementary Table 3, Related to Figure 2. Correlation between NCI-60 transcript 
expression and SWATH-MS protein expression for indicated gene. 

Supplementary Table 4, Related to Figure 2. Stoichiometry of 101 protein complexes in 
the NCI-60 proteotype. Average Abundance (log10) means the averaged log 10 scaled 
protein abundance signal for proteins in a complex. Standard Deviation means the standard 
deviation of log 10 scaled protein abundance signal for proteins in a complex. Average 
Pearson Correlation means the averaged Pearson corelation value for each pair of proteins in 
a complex. 

Supplementary Table 5, Related to Figure 2. The activity of apoptosiswas found 
significantly higher in ovarian cell lines. (A) The modules that show a significant dispersion 
are reported here. (B) A t-test is performed for cell lines from one cancer type vs. all other 
cancer cell lines. 

Supplementary Table 6, Related to Figure 3. Cellminer data for the NCI-60 cells used in 
this study. (A) Exome data of the NCI-60 cells. (B) Log2 scaled mRNA expression data of 
the NCI-60 cells. (C) Common features at three different levels, i.e. DNA, mRNA and 
protein. 

Supplementary Table 7, Related to Figure 3. Elastic net results.  

 

 

 



Transparent Methods 

PCT-assisted sample preparation for MS analyses  

 The NCI-60 cells were obtained as frozen, non-viable cell pellets from the 
Developmental Therapeutics Program (DTP), National Cancer Institute (NCI-NIH) and 
processed using Barocycler® NEP2320 (PressureBioSciences Inc, South Easton, MA). The 
IDs of the NCI-60 cells in our study matching to the IDs in Cellminer and a previous 
proteomic study by the Kuster group are provided in Supplementary Table 1. Briefly, cell 
pellets were lysed in a buffer containing 8M urea, 0.1M ammonium bicarbonate, and 
CompleteTM protease inhibitor using barocycler program (20 seconds 45 kpsi, 10 seconds 0 
kpsi, 120 cycles) at 35°C (Guo et al., 2015). Whole cell lysates were sonicated for 25 seconds 
with 1 min interval on ice for 3 times. Cellular debris was removed by centrifugation and 
sample protein concentration was determined by BCA assay prior to protein reduction with 10 
mM TCEP for 20 min at 35°C, and alkylation with 40 mM iodoacetamide in the dark for 30 
min at room temperature. Lys-C digestion (1/50, w/w) was performed in 6 M urea using PCT 
program (25 seconds 25 kpsi, 10 seconds 0 kpsi 75 cycles) at 35°C; whereas trypsin digestion 
(1/30, w/w) was performed in further diluted urea (1.6M) using PCT program (25 seconds 25 
kpsi, 10 seconds 0 kpsi, 160 cycles) at 35°C. Digestion was stopped by acidification with 
trifluoroacetic acid to a final pH of around 2 before C18 column desalting using SEP-PAK 
C18 cartridges (Waters Corp., Milford, MA, USA). 

 

Off-gel electrophoresis  

 To create a comprehensive spectral library for SWATH-MS analysis, we pooled 20-40% 
of desalted peptide solutions from each NCI-60 sample and performed off-gel fractionation. 
Briefly, pooled peptides were resolubilised in OGE buffer containing 5% (v/v) glycerol, 0.7% 
(v/v) acetonitrile (ACN) and 1% (v/v) carrier ampholytes mixture (IPG buffer pH 3.0-10.0, 
GE Healthcare). Fractionation was performed on a 3100 OFFGEL (OGE) Fractionator 
(Agilent Technologies) using a 24 cm pH3-10 IPG strip (Immobilised pH Gradient strip from 
GE Healthcare) according to manufacturer’s instructions using a program of 1 h rehydration 
at a maximum of 500 V, 50 µA and 200 mW followed by separation at a maximum of 8000 
V, 100 µA and 300 mW until 50 kVh were reached. Each of 24 fraction was recovered and 
cleaned up by C18 reversed-phase MicroSpin columns (The Nest Group Inc.). Based on the 
sample complexity (based on Nanodrop, A280 measurement), for each strip, the following 
fractions were pooled into 12 samples for MS injections: pool 1 (fraction 1-2), pool 2 
(fraction 3), pool 3 (fraction 4), pool 4 (fraction 5), pool 5 (fraction 6-7), pool 6 (fraction 8-9), 
pool 7 (fraction 10-11), pool 8 (fraction 12-15), pool 9 (fraction 16-19), pool 10 (fraction 20-



21), pool 11 (fraction 22), pool 12 (fraction 23-24). Those were injected in quadruplicate, 
resulting in 48 DDA injections of fractionated samples. 

 

DDA MS for spectral library generation 

 For spectral library generation, a SCIEX TripleTOF 5600 System mass spectrometer was 
operated essentially as described before (Schubert et al., 2015): all samples were analyzed on 
an Eksigent nanoLC (AS-2/1Dplus or AS-2/2Dplus) system coupled with a SWATH-MS-
enabled AB SCIEX TripleTOF 5600 System. The HPLC solvent system consisted of buffer A 
(2% ACN and 0.1% formic acid, v/v) and buffer B (95% ACN with 0.1% formic acid, v/v). 
Samples were separated in a 75 μm diameter PicoTip emitter (New Objective) packed with 20 
cm of Magic 3 μm, 200A C18 AQ material (Bischoff Chromatography). The loaded material 
was eluted from the column at a flow rate of 300 nL min-1 with the following gradient: linear 
2 - 35% B over 120 min, linear 35 - 90% B for 1 min, isocratic 90% B for 4 min, linear 90 - 
2% B for 1 min and isocratic 2% solvent B for 9 min. The mass spectrometer was operated in 
DDA mode using a top20 method, with 500 ms and 150 ms acquisition time for the MS1 and 
MS2 scans respectively, and 20 s dynamic exclusion for the fragmented precursors. Rolling 
collision energy using the following equation (0.0625 × m/z - 3.5) with a collision energy 
spread of 15 eV was used for fragmentation regardless of the charge state of the precursors, to 
mimic as close as possible the fragmentation conditions of the precursors in SWATH-MS 
mode. Altogether, we had 66 DDA-MS injections, including the 48 OGE samples and another 
18 pooled peptide samples from the unfractionated cell lysate of the NCI-60 cells. 

 

Spectral and assay library generation 

 All raw instrument data were centroided using Proteowizard msconvert (version 2.0). 
The assay library was generated using an established protocol (Schubert et al., 2015). In short, 
the shotgun data sets were searched individually using X!Tandem (Craig and Beavis, 2003) 
(2011.12.01.1) with k-score plugin (MacLean et al., 2006), Myrimatch (Tabb et al., 2007) 
(2.1.138), OMSSA (Geer et al., 2004) (2.1.8) and Comet (Eng et al., 2013) (2013.02r2) 
against the reviewed UniProtKB/Swiss-Prot (2014_02) protein sequence database containing 
20,270 proteins appended with 11 iRT peptides and decoy sequences. Carbamidomethyl was 
used as a fixed modification and oxidation as the variable modification. Maximally two 
missed cleavages were allowed. Peptide mass tolerance was set to 50 ppm, fragment mass 
error to 0.1 Da. The search identifications were combined and statistically scored using 
PeptideProphet (Keller et al., 2002) and iProphet (Shteynberg et al., 2011) available within 
the Trans-Proteomics Pipeline (TPP) toolset (version 4.7.0) (Keller et al., 2005). MAYU 



(Reiter et al., 2009) (v. 1.07) was used to determine the iProphet cutoff (0.999354) 
corresponding to a protein FDR of 1.03%. SpectraST was used in library generation mode 
with CID-QTOF settings and iRT normal-isation at import against the iRT Kit (Escher et al., 
2012) peptide sequences (-c_IRTirt.txt -c_IRR) and a consensus library was consecutively 
generated. An in-house python script, spec-trast2tsv.py31 (msproteomicstools 0.2.2) was then 
used to generate the assay library with the following settings: -l 350,2000 -s b,y -x 1,2 -o 6 -n 
6 -p 0.05 -d -e -w swath32.txt -k openswath (fragment ions between 350 and 2000 m/z, b and 
y ions authorized, fragment charges 1+ and 2+, 6 most intense transitions, precision of 
fragment ion retrieved 0.05 Da, exact fragment ion mass calculated, exclude fragments in the 
swath window). The OpenSWATH tool, ConvertTSVToTraML converted the TSV file to 
TraML format; Open-SwathDecoyGenerator generated the decoy assays in shuffle mode and 
appended them to the TraML assay library. In this study, we built a SWATH assay library 
containing 86,209 proteotypic peptide precursors in 8,056 proteotypic SwissProt proteins. 
This library is supplied in PRIDE project PXD003539. 

 

SWATH-MS 

 The SWATH-MS data acquisition in a Sciex TripleTOF 5600 mass spectrometer was 
performed as described before (Gillet et al., 2012), using 32 windows of 25 Da effective 
isolation width (with an additional 1 Da overlap on the left side of the window) and with a 
dwell time of 100 ms to cover the mass range of 400 - 1200 m/z in 3.3 s. The collision energy 
for each window was set using the collision energy of a 2+ ion centered in the middle of the 
window (equation: 0.0625 x m/z - 3.5) with a spread of 15 eV. The sequential precursor 
isolation window setup was as follows: [400-425], [424-450], [449-475], …, [1174-1200].  

 

Protein identification using OpenSWATH 

We analyzed the SWATH data using OpenSWATH software (Rost et al., 2014) using 
parameters as described previously (Ori et al., 2016). We identified 48,374 peptides from 
6,556 protein groups from the NCI-60 panel with < 1% false discovery rate at both peptide 
and protein level evaluated by OpenSWATH (Rost et al., 2014)and Mayu (Reiter et al., 2009) 
(supplied in PRIDE project PXD003539).  

 

DIA-expert analyses 

The DIA-expert software read OpenSWATH output result file which contains statistical 
scores (i.e. mProphet score or mScore) indicating the confidence of identification for each 



peptide precursor in each sample, and from there selected the sample in which a peptide 
precursor was identified with highest confidence. It then obtained extracted ion 
chromatograms (XICs) for the target peptide precursor and all associated annotated b and y 
fragments in the reference sample, and refined fragments based on the peak shape of each 
fragment and its peak boundary. The refined fragments and precursor XIC traces from each of 
the rest samples were subsequently compared with the reference peak group using empirical 
expert rules, based on which the best matched peak group in each sample was picked and 
visualized. Duplicated measurements were used to evaluate the accuracy of peptide and 
protein quantification. The protein quantity was normalized based on total ion 
chromatography of the MS1 spectra from each raw SWATH file. All codes are provided in 
Github https://github.com/tiannanguo/dia-expert.  

 

PRM analysis 

PRM quantification strategy was used to quantify selected proteins. Biognosys-11 iRT 
peptides (Biognosys, Schlieren, CH) were spiked into peptide samples at the final 
concentration of 10% prior to MS injection for RT calibration. Peptides were separated at 300 
nL/min along a 45min 8–35% linear LC gradient (buffer A: 2% ACN, 0.1% formic acid; 
buffer B: 20% ACN, 0.1% formic acid). The Q Exactive HF-X Hybrid Quadrupole-Orbitrap 
Mass Spectrometer was operated in the MS/MS mode with time-scheduled acquisition for 54 
peptides in a +/- 5 min retention time window. The full MS mode was measured at resolution 
60,000 at m/z 200 in the Orbitrap, with AGC target value of 3E6 and maximum IT of 55ms. 
Target ions were submitted to MS/MS in the HCD cell (1.2 amu isolation width, 30% 
normalized collision energy). MS/MS spectra were acquired at resolution 30,000 (at m/z 200) 
in the Orbitrap using AGC target value of 2E5, a max IT of 100ms. 

 

Quantitative proteomics and transcriptomics analysis of protein complexes components 

 Technical replicates were averaged to generate the NCI-60 proteotypes. To assess the 
coverage of protein complexes by NCI-60 proteotypes, we first retrieved a large resource of 
mammalian protein complexes assembled from CORUM (Ruepp et al., 2010), COMPLEAT 
(Vinayagam et al., 2013) and literature-curated complexes (Ori et al., 2013; Ori et al., 2016). 
This resource contains 2,041 proteins as members of 279 distinct complexes and it is 
available at http://variablecomplexes.embl.de/. 101 complexes were represented in the NCI-
60 proteotypes with at least 5 members quantified. These complexes, in total, contain 1,045 
distinct proteins quantified in the NCI-60 proteotypes. Pearson’s correlation coefficient was 
calculated for all the pairwise comparisons of 3,171 proteins across the NCI-60 cell lines. All 



pairwise comparisons were classified into two categories: either two proteins were members 
of the same complex or not. Average abundance, standard deviation and average Pearson 
correlation of each complex were calculated based on the abundance of complex members in 
the NCI-60 proteotypes. 

 An extended list of protein-protein interactions (PPIs) was generated based on 
information acquired from 6 resources: 1) 17,556 PPIs were retrieved from the CORUM 
database of human protein complexes (Ruepp et al., 2010); 2) 16’345 PPIs were composed 
from the interaction pairs annotated as ‘complex’ members in the Reactome database 
(Fabregat et al., 2018); 3) 12,664 PPIs were retrieved from the STRING database (Szklarczyk 
et al., 2015) considering only high confidence interactions (score ≥ 700). 4) 1’378 interaction 
pairs were obtained from Interactome3D (Mosca et al., 2013). These interactors corresponded 
to experimentally observed interactions with a support in the form of structural data or 
structural models. 5) 309 PPIs were obtained by considering interactions identified in at least 
3 independent APMS experiments. For this, we included studies deposited in the BioGrid 
database (Chatr-Aryamontri et al., 2017), interactions listed in the BioPlex portal (Huttlin et 
al., 2015), and interactions observed in the large-scale Polycomb (Hauri et al., 2016) and 
Kinome studies (manuscript in preparation). 6) 122 PPIs were retrieved from the EMBL-EBI 
complex portal (Park et al., 2017). The latter (smallest) set of interactions is manually curated 
and of high confidence. 

 Combining information from the different databases, a list of 35,693 unique interactions 
(encompassing 1,766 proteins) was generated. The Spearman coefficient of correlation of 
protein abundances (Spearman’s r) and the associated p-value were calculated for all the 
5,026,035 protein pairs that can be formed from the 3171 proteins measured in the proteomics 
dataset. For this, the cor.mtest function from the package corrplot was applied with the 
Benjamini-Hochberg correction for multiple testing. Distribution of pairwise correlation 
values for three different sets was visualized with the density plots. The sets represented pairs 
found to interact in the respective database, all background NCI60 pairs (common to all 
analysis) and protein pairs that were both measured by NCI60 and present in the respective 
database, but not reported as interacting. The mean correlation values between the datasets 
were compared with the Wilcoxon test in R.  

 Pairwise correlation analysis of the mRNA levels was based on the expression data 
retrieved from the CellMiner. Cell lines with missing values (CNS.SF_539, ME.MDA_N and 
LC.NCI_H23) and transcripts for which the matching proteins were not measured were 
excluded from the analysis. Therefore, the final analysis was performed on a complete matrix 
with 57 cell lines and 2,835 transcripts. The Spearman’s r and associated p-values were 
calculated as above for the 4,017,195 mRNA pairs that can be formed from the 2835 



measured transcripts. Distribution of correlation values was compared between the set of true 
interaction partners and the corresponding background sets as described above. 

 

Pathway activity analysis 

 The activity of pathways, as they are described in ACSN, has been computed using 
ROMA (Martignetti et al., 2016). Among all the modules defined in ACSN, only 11 show a 
significant dispersion over the data set: AKT_MTOR, HR (Homologous Recombination), 
NER (nucleotide Excision Repair), TNF response, Death Receptors regulators, Apoptosis, 
caspases, E2F3 and E2F4 targets, HIF1 and cytoskeleton polarity. For these modules, the 
mean activity score for each type of cancer cell lines was computed and mapped onto the atlas 
(from bright green for low values to bright red for high values). To assess module differential 
activity between proteotypes, we computed a t-test on the activity scores in cell lines of a 
cancer type versus the activity of all other cancer cell lines. The definition of genes 
composing each module can be found in http://acsn.curie.fr  

 

Drug sensitivity prediction using elastic net 

 The elastic net regularized regression algorithm was applied to predict drug response for 
240 FDA-approved or investigational NSC-designated compounds. Some widely studied 
drugs are represented by more than one NSC identifier, with each identifier associated with a 
distinct compound sample and series of NCI-60 drug activity assays. For each compound, two 
sets of input data were evaluated. These included NCI-60 mRNA expression, gene-level 
mutation alone and in combination with SWATH-MS protein expression. mRNA expression 
data was available for 25,040 genes, and derived from CellMiner 
(discover.nci.nih.gov/cellminer and discover.nci.nih.gov/cellminecdb) (Rajapakse et al., 
2018; Reinhold et al., 2012; Reinhold et al., 2015; Reinhold et al., 2017), with missing values 
imputed using the impute.knn function (with default parameters) of the Bioconductor impute 
package. Gene-level mutation profiles were available for 9,307 genes, and were obtained 
from CellMiner exome sequencing data, with values indicating the percent conversion to a 
variant form for the case of expected function-impacting alterations (frameshift, nonsense, 
splice-sense, missense mutations by SIFT/PolyPhen2 analysis). SWATH-MS based protein 
expression data from the current study was also included.  

Elastic net analysis was done using the glmnet R package (Friedman et al., 2010). The elastic 
net analysis was conducted using a multi-step pipeline involving cross-validations performed 
in a nested manner. The “outer” cross-validation is a leave-one-out cross validation that is 
conducted over all computational steps present in the “inner” pipeline, and it is used to 



validate model performance. The “inner” cross-validation are conducted to select elastic net 
hyperparameters (alpha and lambda) and for predictor set trimming, using data from a set of 
~59 cell lines.  

The elastic net parameters alpha and lambda were selected by minimizing the cross-validation 
error (average of 10 replicates of 10-fold cross-validation) within the “inner” pipeline. The 
selected alpha and lambda parameters were then applied to 200 runs of the elastic net 
algorithm, each using a random data subset derived from 90% of the available cell lines. The 
200 resulting coefficient vectors were then averaged, and predictors were ranked by the 
magnitude of their average coefficient weight. To select a limited number of predictors with 
potential to generalize to new data, top k-element predictor sets (by average coefficient 
weight magnitude) were evaluated using standard linear regression and 10-fold cross-
validation. The appropriate k was set to the smallest value yielding a cross-validation error 
within one standard deviation of the minimum cross-validation error.  

To obtain a robust estimate of performance on unseen data, leave-one-out cross-validation 
was applied to the overall procedure as part of the “outer” pipeline. Specifically, drug 
response for each cell line was predicted using an elastic net model derived using the 
remaining held out data (and the steps outlined above). The vector of predicted response 
values was then correlated with the actual response values, with the Pearson’s correlation 
coefficient providing an estimate of the predictive value of the applied input data 
combination. More details of the elastic net algorithm are provided in Supplementary Note 6. 

Elastic net analysis was done using the rcellminerElasticNet R package 
(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet), which facilitates the application of 
the glmnet R package (which provides the elastic net algorithm code) to data from the 
rcellminer and rcellminerData packages (Luna et al., 2016). rcellminerElasticNet also 
provides utility functions for summarizing and visualizing elastic net results.  

Results for the elastic net analysis are available from this URL: 
https://discover.nci.nih.gov/cellminerreviewdata/swath_analysis/swathOutput_062316_all.tar.
gz. This compressed file contains results for the analysis run with all features and selected 
common features. Each drug compound has three files for each combination of molecular 
features used in a particular run of the elastic net algorithm: 1) a knitr report R Markdown 
(.Rmd) file containing the code that was run, 2) an RData (.Rdata) file containing the results 
of each elastic net run (see elasticNet() documentation in the rcellminerElasticNet package), 
3) the rendered knitr report as a webpage (.html).  

Beyond the knitr report containing code, the elastic net pipeline is made reproducible using a 
Docker image. Docker (www.docker.com) is an emerging platform for conducting 
reproducible research in the biomedical research community. All necessary software and 



dependencies to run the described analysis have been embedded in the available Docker 
container to provide readers an environment that runs on all major operating systems 
(including Windows, OSX, and Linux), making Docker containers self-contained, portable, 
and capable of performing at levels similar to the host system. 
      The Docker container is available at the Docker Hub repository: cannin/swath 
(https://hub.docker.com/r/cannin/swath/). Key dependencies installed, include: RStudio 
Server (https://www.rstudio.com/), rcellminer/rcellminerData (Luna et al., 2016), and 
rcellminerElasticNet. With these installed dependencies, readers have the opportunity to 1) re-
run analysis for specific drug compounds and modify the code in order to extend the analysis 
using RStudio Server, a web-based version of the RStudio R editor, and 2) use an R Shiny 
app web-based data explorer to further understand described results. Instructions on the usage 
of the Docker container are located at the rcellminerElasticNet project page 
(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet).  
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