12 research outputs found
A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein
The quantification of alpha-fetoprotein (AFP) as a potential liver cancer biomarker which is generally found in ultratrace level is of significance in biomedical diagnostics. Therefore, it is challenging to find a strategy to fabricate a highly sensitive electrochemical device towards AFP detection through electrode modification for signal generation and amplification. This work shows the construction of a simple, reliable, highly sensitive, and label-free aptasensor based on polyethyleneimine-coated gold nanoparticles (PEI-AuNPs). A disposable ItalSens screen-printed electrode (SPE) is employed for fabricating the sensor by successive modifying with PEI-AuNPs, aptamer, bovine serum albumin (BSA), and toluidine blue (TB), respectively. The AFP assay is easily performed when the electrode is inserted into a small Sensit/Smart potentiostat connected to a smartphone. The readout signal of the aptasensor derives from the electrochemical response of TB intercalating into the aptamer-modified electrode after binding with the target. The decrease in current response of the proposed sensor is proportional to the AFP concentration due to the restriction of the electron transfer pathway of TB by a number of insulating AFP/aptamer complexes on the electrode surface. PEI-AuNPs improve SPE’s reactivity and provide a large surface area for aptamer immobilization whereas aptamer provides selectivity to the target AFP. Consequently, this electrochemical biosensor is highly sensitive and selective for AFP analysis. The developed assay reveals a linear range of detection from 10 to 50000 pg mL−1 with R2 = 0.9977 and provided a limit of detection (LOD) of 9.5 pg mL−1 in human serum. With its simplicity and robustness, it is anticipated that this electrochemical-based aptasensor will be a benefit for the clinical diagnosis of liver cancer and further developed for other biomarkers analysis
Ultra-Small Water-Dispersible Fluorescent Chitosan Nanoparticles: Synthesis, Characterization And Specific Targeting
A robust water-in-oil microemulsion method of making water-dispersible ultra-small (\u3c30 nm) size fluorescent chitosan nanoparticles is reported for the first time and specific targeting of these FCNPs to human leukemia cells via aptamer recognition is demonstrated. © The Royal Society of Chemistry 2009
Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation
Detection of miR-29a, a biomarker of cancers, using SERS tags and magnetic separation is described. The assay was designed to detect the miR-29a sequence by taking the complementary sequence and splitting it into a capture and detection probe. The SERS tags comprised the highly Raman active molecule 4-mercaptobenzoic acid (4-MBA) and DNA detection probes assembled onto the surface of gold nanorods (AuNRs) through the self-assembly process. The capture DNA conjugated magnetic nanoparticles (MNPs) were applied as capture probes. The detection was based on the hybridisation and sandwich complex formation. The resultant hybridisation-dependent complexes were recovered and enriched from the samples by magnetic separation. The enriched solution containing target miRNA hybridised with capture probes were dropped on a foil-covered slide to form a droplet for SERS analysis. A characteristic spectrum of 4-MBA was observed to indicate the presence of the miR-29a in the samples. The sensitivity of the assay is examined by measuring the SERS signal of the samples containing different concentrations of the miR-29a. The SERS intensity appears to increase with the concentration of miR-29a. The limit of detection (LOD) was found to be 10 pM without any amplification process. In addition, the selectivity and feasibility of the assay in complex media are evaluated with the non-target miRNAs comprising different sequences from the target miR-29a. The system was capable of detecting the target miR-29a specifically with high selectivity. These results suggest that this solution-based SERS platform has a significant capability for simple, sensitive, and selective miR-29a analysis
Pattern Recognition of Cancer Cells Using Aptamer-Conjugated Magnetic Nanoparticles
Biocompatible magnetic nanosensors based on reversible self-assembly of dispersed magnetic nanoparticles into stable nanoassemblies have been used as effective magnetic relaxation switches (MRSw) for the detection of molecular interactions. We report, for the first time, the design of MRSw based on aptamer-conjugated magnetic nanoparticles (ACMNPs). The ACMNPs capitalize on the ability of aptamers to specifically bind target cancer cells, as well as the large surface area of MNPs to accommodate multiple aptamer binding events. The ACMNPs can detect as few as 10 cancer cells in 250 μL of sample. The ACMNPs’ specificity and sensitivity are also demonstrated by detection in cell mixtures and complex biological media, including fetal bovine serum, human plasma, and whole blood. Furthermore, by using an array of ACMNPs, various cell types can be differentiated through pattern recognition, thus creating a cellular molecular profile that will allow clinicians to accurately identify cancer cells at the molecular and single-cell level