16 research outputs found

    Status and plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system

    Crab Flare Observationswith H.E.S.S. Phase II

    No full text
    The H.E.S.S. array is a third generation Imaging Atmospheric Cherenkov Telescope (IACT) array. It is located in the Khomas Highland in Namibia, and measures very high energy (VHE) gamma-rays. In Phase I, the array started data taking in 2004 with its four identical 13 m telescopes. Since then, H.E.S.S. has emerged as the most successful IACT experiment to date. Among the almost 150 sources of VHE gamma-ray radiation found so far, even the oldest detection, the Crab Nebula, keeps surprising the scientific community with unexplained phenomena such as the recently discovered very energetic flares of high energy gamma-ray radiation. During its most recent flare, which was detected by the Fermi satellite in March 2013, the Crab Nebula was simultaneously observed with the H.E.S.S. array for six nights. The results of the observations will be discussed in detail during the course of this work.During the nights of the flare, the new 24 m × 32 m H.E.S.S. II telescope was still being commissioned, but participated in the data taking for one night. To be able to reconstruct and analyze the data of the H.E.S.S. Phase II array, the algorithms and software used by the H.E.S.S. Phase I array had to be adapted. The most prominent advanced shower reconstruction technique developed by de Naurois and Rolland, the template-based model analysis, compares real shower images taken by the Cherenkov telescope cameras with shower templates obtained using a semi-analytical model. To find the best fitting image, and, therefore, the relevant parameters that describe the air shower best, a pixel-wise log-likelihood fit is done. The adaptation of this advanced shower reconstruction technique to the heterogeneous H.E.S.S. Phase II array for stereo events (i.e. air showers seen by at least two telescopesof any kind), its performance using MonteCarlo simulations as well as its application to real data will be described

    Sensitivity and performance simulations for transient phenomena in the H.E.S.S. analysis framework

    No full text
    Certain classes of astrophysical phenomena at high energies are known to be irregularly variable or of transient character, related to sources such as GRBs, AGN, or binary systems. Due to nonoptimized analysis schemes for transient searches at short timescales, some of those phenomena might have escaped proper characterization in the present H.E.S.S. analysis chains.In order to test the performance of our transient analysis capabilities, a module was developed to inject fake events into real data files. In that way a finite level of variability can be added to data from real sources to mimic characteristic variability patterns.Accordingly, this tool allows us to investigate the sensitivity limits of the analysis chains as a function of a variety of assumptions, such as different time profiles or spectral transitions, and to study performance and reliability for application in short-time transient searches with H.E.S.S

    Photon Reconstruction for H.E.S.S. Using a Semi-Analytical Model

    No full text
    International audienceThe High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to detect cosmogenic gamma-rays with very high energies. Originally consisting of just four identical IACTs (CT1-4) with an effective mirror diameter of 12\,m each, it was expanded with a fifth IACT (CT5) with a mirror diameter of 28\,m in 2012. Being the largest IACT worldwide, CT5 allows to lower the energy threshold of H.E.S.S., making the array sensitive at energies where space-based detectors run out of statistics. Events can be analysed either monoscopically (i.e. using only information of CT5) or stereoscopically (requiring at least two triggered telescopes per event). To achieve a good performance, a sophisticated event reconstruction and analysis framework is indispensable. This is particularly important for H.E.S.S. since it is now the first IACT array that consists of different telescope types. An advanced reconstruction method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere (model analysis). The properties of the primary particle are reconstructed by comparing the image recorded by each triggered telescope with the Cherenkov emission from the shower model using a log-likelihood maximisation. Due to its performance, this method has become one of the standard analysis techniques applied to CT1-4 data. Now it has been modified for use with the five-telescope array. We present the adapted model analysis and its performance in both monoscopic and stereoscopic analysis mode

    A White Rabbit-Synchronized Accurate Time-Stamping Solution for the Small-Sized Cameras of the Cherenkov Telescope Array

    No full text
    This article presents the Zynq-embedded node for the Cherenkov telescope array (ZEN-CTA) node, a programmable system-on-chip (SoC) with White Rabbit (WR)-synchronization capability. It targets a solution for the uniform clock and trigger time-stamping module of the small-sized telescopes in the CTA. This module is tasked as a distributed acquisition device with a focus on obtaining time stamps for candidate Cherenkov events, which could be generated at potentially high rates from very-high-energy gamma rays and their subsequent distribution over Ethernet. In this context, the customized design of the ZEN-CTA node is examined thoroughly, including its generic implementation aspects and its main functional blocks. The design of the WR-assisted time-to-digital converters (TDCs) for time-stamping analog triggers is presented in detail alongside the implementation of an upgraded high-speed data path (1 Gb/s) for the WR-compatible Ethernet interfaces of the node. The new data path will feature a direct memory access engine for direct software transmissions and a hardware description language (HDL) coprocessor for high-speed forwarding. Next, the time-stamping accuracy of the WR-enhanced TDCs will be characterized alongside the forwarding efficiency of the new data path. Finally, conclusions are drawn, and the main contributions of this research are enumerated, a potential deployment within the CTA infrastructure to support the acquisition of Cherenkov light is considered, and additional use cases are mentioned

    The H.E.S.S. data acquisition system

    Get PDF
    The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes located in the Khomas Highland in Namibia. It measures cosmic gamma-rays with very high energies (> 100 GeV) using the Earth's atmosphere as a calorimeter. The H.E.S.S. experiment has entered Phase II in September 2012 with the inauguration of a fifth telescope that is larger and more complex than the other four. The very large mirror area of 600 m2 in comparison to the 100 m2 of the smaller telescopes results in a lower energy threshold as well as an increased overall sensitivity of the system. Moreover, the huge effective area, due to the large mirror size, is crucial in the detection of short time scale low energy transient events. This paper will give a brief overview of the design principles of the current H.E.S.S. data acquisition and array control system. Particular emphasis is given to the new Target of Opportunity alert system that has recently been introduced to the array and allows the instrument to react to such an alert within 60 s

    H.E.S.S. observations following multi-messenger alerts in real-time

    No full text
    International audienceThe H.E.S.S. Imaging Air Cherenkov Telescope system is, due to its fast reaction time and its comparably low energy threshold, very well suited to perform follow-up observations of detections at other wavelengths or other messengers like high-energy neutrinos and gravitational waves. These advantages are utilized optimally via a fully automatized system reacting to alerts from various partner observatories covering various wavelengths and astrophysical messengers.In this contribution we'll provide an overview and present recent results from H.E.S.S. programs to follow up on multi-wavelength and multi-messenger alerts. To illustrate the capabilities of the system we present several real-time ToO observations searching for high-energy gamma-ray emission in coincidence with high-energy neutrinos detected by the IceCube and ANTARES neutrino telescopes and outline our program to search for gravitational wave counterparts

    GRB observations with H.E.S.S. II

    No full text
    The High Energy Stereoscopic System (H.E.S.S.) has been searching for counterparts of Gamma Ray Bursts (GRBs) for many years. In 2012 the system was upgraded with a fifth 28 m diameter telescope (CT5) which is equipped with faster motors for rapid repointing, marking the start of the second phase of H.E.S.S. operation (H.E.S.S. II). CT5s large light collection area of 600m 2 improves the sensitivity to low-energy gamma-rays and even extends the energy range below 100 GeV. The search for counterparts continues now in the energy range of tens of GeV to tens of TeV. A detection in this energy range would open a new window to the part of the spectrum of these highly energetic explosions which Fermi-LAT has only successfully detected in a reduced subset of events, with rather limited statistics. In the past years, H.E.S.S. has performed follow-up observations based on GRB detections by Swift-BAT and Fermi-GBM/-LAT. This Target of Opportunity observation program was carried out with a generalised Target of Opportunity Alert system. This contribution will highlight key features of the Target of Opportunity Alert system, present follow-up statistics of GRBs as well as detailed results of promising follow-up observations
    corecore