6 research outputs found

    NAB2 and EGR-1 exert opposite roles in regulating TRAIL expression in human Natural Killer cells

    No full text
    The transcriptional regulator NGFI-A binding protein 2 (NAB2) and the early growth response (EGR) genes are key regulators of effector molecules, such as cell death-inducing genes. We have previously shown that NAB2 modulates the levels of expression of the Tumor Necrosis Factor (TNF) family member TNF-related apoptosis inducing ligand (TRAIL) in T cells and plasmacytoid DCs. Provided that TRAIL plays a key role in NK cell cytotoxicity towards infected and tumor cells, we investigated whether NAB2 also mediates TRAIL expression in human NK cells, and if so through which mechanisms. We show that NAB2 is induced in NK cells upon IL-2 and IL-15 stimulation, and promotes the induction of TRAIL. In addition, we show that the transcription factor EGR-1, which is upregulated by the same stimuli as NAB2, rather acts as a brake on TRAIL expression in NK cells. Overall, these data provide new mechanistic insights in the regulation of TRAIL, and show that the gene regulation through the NAB2/EGR axis allows for a highly controlled expression pattern of this effector molecule in NK cell

    m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner

    No full text
    Nucleic acid sensing through pattern recognition receptors is critical for immune recognition of microbial infections. Microbial DNA is frequently methylated at the N-6 position of adenines (m6A), a modification that is rare in mammalian host DNA. We show here how that m6A methylation of 5 '-GATC-3 ' motifs augments the immunogenicity of synthetic double-stranded (ds)DNA in murine macrophages and dendritic cells. Transfection with m6A-methylated DNA increased the expression of the activation markers CD69 and CD86, and of Ifn beta, iNos and Cxcl10 mRNA. Similar to unmethylated cytosolic dsDNA, recognition of m6A DNA occurs independently of TLR and RIG-I signalling, but requires the two key mediators of cytosolic DNA sensing, STING and cGAS. Intriguingly, the response to m6A DNA is sequence-specific. m6A is immunostimulatory in some motifs, but immunosuppressive in others, a feature that is conserved between mouse and human macrophages. In conclusion, epigenetic alterations of DNA depend on the context of the sequence and are differentially perceived by innate cells, a feature that could potentially be used for the design of immune-modulating therapeutics

    NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction

    No full text
    AIMS: Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS: NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1β-, and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45(+) immune cells isolated from healthy mouse hearts but was negligible in cardiac CD31(+) endothelial cells. However, in vitro, Nox1 expression increased in response to lipopolysaccharide (LPS) in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS: NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodelling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD

    NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction

    No full text
    AIMS: Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS: NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1β- and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts, but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to LPS in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS: NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodeling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD. TRANSLATIONAL PERSPECTIVE: In their multifactorial pathogenesis, diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF) still remain poorly understood. They frequently occur in patients with obesity and metabolic syndrome. Microvascular inflammation and dysfunction have recently been recognized as major driving forces. We show that genetic deletion of Nox1 prevents cardiac inflammation, remodeling and dysfunction in metabolic disease in mice and find NOX1 upregulated in peripheral monocytes of patients with DD. These findings add to our understanding how obesity, inflammation and heart disease are linked, which is a prerequisite to find therapeutic strategies beyond the control of co-morbidities in HFpEF
    corecore