157 research outputs found
Computers from plants we never made. Speculations
We discuss possible designs and prototypes of computing systems that could be
based on morphological development of roots, interaction of roots, and analog
electrical computation with plants, and plant-derived electronic components. In
morphological plant processors data are represented by initial configuration of
roots and configurations of sources of attractants and repellents; results of
computation are represented by topology of the roots' network. Computation is
implemented by the roots following gradients of attractants and repellents, as
well as interacting with each other. Problems solvable by plant roots, in
principle, include shortest-path, minimum spanning tree, Voronoi diagram,
-shapes, convex subdivision of concave polygons. Electrical properties
of plants can be modified by loading the plants with functional nanoparticles
or coating parts of plants of conductive polymers. Thus, we are in position to
make living variable resistors, capacitors, operational amplifiers,
multipliers, potentiometers and fixed-function generators. The electrically
modified plants can implement summation, integration with respect to time,
inversion, multiplication, exponentiation, logarithm, division. Mathematical
and engineering problems to be solved can be represented in plant root networks
of resistive or reaction elements. Developments in plant-based computing
architectures will trigger emergence of a unique community of biologists,
electronic engineering and computer scientists working together to produce
living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing
inspired by physics, chemistry and biology. Essays presented to Julian Miller
on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew
Adamatzky (Springer, 2017
Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes
The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical ‘actin collars’ or ‘fringes’ are absent
The CBC theory and its entailments : Why current models of the origin of consciousness fail
Copyright © 2023 The Author(s). The Cellular Basis of Consciousness (CBC) model of biological consciousness is based on the assumption that life and conscious sentience are coterminus. All living organisms, are conscious, self-aware, and have valenced sensory and perceptual experiences
The art of cellular communication: tunneling nanotubes bridge the divide
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes
Life and consciousness – The Vedāntic view
In the past, philosophers, scientists, and even the general opinion, had no problem in accepting the existence of consciousness in the same way as the existence of the physical world. After the advent of Newtonian mechanics, science embraced a complete materialistic conception about reality. Scientists started proposing hypotheses like abiogenesis (origin of first life from accumulation of atoms and molecules) and the Big Bang theory (the explosion theory for explaining the origin of universe). How the universe came to be what it is now is a key philosophical question. The hypothesis that it came from Nothing (as proposed by Stephen Hawking, among others), proves to be dissembling, since the quantum vacuum can hardly be considered a void. In modern science, it is generally assumed that matter existed before the universe came to be. Modern science hypothesizes that the manifestation of life on Earth is nothing but a mere increment in the complexity of matter — and hence is an outcome of evolution of matter (chemical evolution) following the Big Bang. After the manifestation of life, modern science believed that chemical evolution transformed itself into biological evolution, which then had caused the entire biodiversity on our planet. The ontological view of the organism as a complex machine presumes life as just a chance occurrence, without any inner purpose. This approach in science leaves no room for the subjective aspect of consciousness in its attempt to know the world as the relationships among forces, atoms, and molecules. On the other hand, the Vedāntic view states that the origin of everything material and nonmaterial is sentient and absolute (unconditioned). Thus, sentient life is primitive and reproductive of itself – omne vivum ex vivo – life comes from life. This is the scientifically verified law of experience. Life is essentially cognitive and conscious. And, consciousness, which is fundamental, manifests itself in the gradational forms of all sentient and insentient nature. In contrast to the idea of objective evolution of bodies, as envisioned by Darwin and followers, Vedānta advocates the idea of subjective evolution of consciousness as the developing principle of the world. In this paper, an attempt has been made to highlight a few relevant developments supporting a sentient view of life in scientific research, which has caused a paradigm shift in our understanding of life and its origin
Embryogenesis in Sedum acre L.: structural and immunocytochemical aspects of suspensor development
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed
The F-actin cytoskeleton in syncytia from non-clonal progenitor cells
The actin cytoskeleton of plant syncytia (a multinucleate cell arising through fusion) is poorly known: to date, there have only been reports about F-actin organization in plant syncytia induced by parasitic nematodes. To broaden knowledge regarding this issue, we analyzed F-actin organization in special heterokaryotic Utricularia syncytia, which arise from maternal sporophytic tissues and endosperm haustoria. In contrast to plant syncytia induced by parasitic nematodes, the syncytia of Utricularia have an extensive F-actin network. Abundant F-actin cytoskeleton occurs both in the region where cell walls are digested and the protoplast of nutritive tissue cells fuse with the syncytium and also near a giant amoeboid in the shape nuclei in the central part of the syncytium. An explanation for the presence of an extensive F-actin network and especially F-actin bundles in the syncytia is probably that it is involved in the movement of nuclei and other organelles and also the transport of nutrients in these physiological activity organs which are necessary for the development of embryos in these unique carnivorous plants. We observed that in Utricularia nutritive tissue cells, actin forms a randomly arranged network of F-actin, and later in syncytium, two patterns of F-actin were observed, one characteristic for nutritive cells and second—actin bundles—characteristic for haustoria and suspensors, thus syncytia inherit their F-actin patterns from their progenitors
Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins
Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed
Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation
- …