21 research outputs found

    The new automated daily mortality surveillance system in Portugal

    Get PDF
    The experience reported in an earlier Eurosurveillance issue on a fast method to evaluate the impact of the 2003 heatwave on mortality in Portugal, generated a daily mortality surveillance system (VDM) that has been operating ever since jointly with the Portuguese Heat Health Watch Warning System. This work describes the VDM system and how it evolved to become an automated system operating year-round, and shows briefly its potential using mortality data from January 2006 to June 2009 collected by the system itself. The new system has important advantages such as: rapid information acquisition, completeness (the entire population is included), lightness (very little information is exchanged, date of death, age, sex, place of death registration). It allows rapid detection of impacts (within five days) and allows a quick preliminary quantification of impacts that usually took several years to be done. These characteristics make this system a powerful tool for public health action. The VDM system also represents an example of inter-institutional cooperation, bringing together organisations from two different ministries, Health and Justice, aiming at improving knowledge about the mortality in the population

    Corrosion behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl solution

    Get PDF
    Electrodeposition is a widely used method to protect metallic materials from corrosion. Electrodeposited coatings provide the metal substrate with both cathodic protection and a barrier effect. The corrosion resistance achieved with this type of zinc-electroplating process in increased by adding nanometric materials to the electrolytic bath. In the present research, coatings were obtained by electrodeposition of pure zinc, Zn-TiO2 and Zn-ZnO nanoparticles. The coatings were generated by immersion in a chloride acid bath applying a current density of 0.05 and 0.10 A/cm2 for 1 min and adding 2 g/l of TiO2 or ZnO nanoparticles. Corrosion behaviour was evaluated with potentiodynamic polarization curves and the electrochemical impedance spectroscopy (EIS) technique using a 3.5% NaCl test solution. After electrochemical testing, the coating surface morphology was analysed by scanning electron microscopy (SEM) and the atomic composition by energy dispersive X-ray spectroscopy (EDS). The electrodeposited coating thickness was measured using the ultrasound technique. The coating thickness was less than 2.5 μm and its corrosion resistance increased with the addition of nanoparticles

    Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study

    Get PDF
    Within the Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) project we conducted a multicentre case–control study in eight European Union (EU) Member States to estimate the 2011/12 influenza vaccine effectiveness against medically attended influenza-like illness (ILI) laboratory-confirmed as influenza A(H3) among the vaccination target groups. Practitioners systematically selected ILI / acute respiratory infection patients to swab within seven days of symptom onset. We restricted the study population to those meeting the EU ILI case definition and compared influenza A(H3) positive to influenza laboratory-negative patients. We used logistic regression with study site as fixed effect and calculated adjusted influenza vaccine effectiveness (IVE), controlling for potential confounders (age group, sex, month of symptom onset, chronic diseases and related hospitalisations, number of practitioner visits in the previous year). Adjusted IVE was 25% (95% confidence intervals (CI): -6 to 47) among all ages (n=1,014), 63% (95% CI: 26 to 82) in adults aged between 15 and 59 years and 15% (95% CI: -33 to 46) among those aged 60 years and above. Adjusted IVE was 38% (95%CI: -8 to 65) in the early influenza season (up to week 6 of 2012) and -1% (95% CI: -60 to 37) in the late phase. The results suggested a low adjusted IVE in 2011/12. The lower IVE in the late season could be due to virus changes through the season or waning immunity. Virological surveillance should be enhanced to quantify change over time and understand its relation with duration of immunological protection. Seasonal influenza vaccines should be improved to achieve acceptable levels of protection.ECD

    Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera

    Get PDF
    The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.</p

    Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    No full text
    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C18 columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C18-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E–Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C18 columns was the most technically and economically favourable method

    Effect of silica fume and fly ash admixtures on the corrosion behavior of AISI 304 embedded in concrete exposed in 3.5% NaCl solution

    No full text
    The use of supplementary cementitious materials such as fly ash, slag, and silica fume improve reinforced concrete corrosion performance, while decreasing cost and reducing environmental impact compared to ordinary Portland cement. In this study, the corrosion behavior of AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS) reinforcements was studied for 365 days. Three different concrete mixtures were tested: 100% CPC (composite Portland cement), 80% CPC and 20% silica fume (SF), and 80% CPC and 20% fly ash (FA). The concrete mixtures were designed according to the ACI 211.1 standard. The reinforced concrete specimens were immersed in a 3.5 wt. % NaCl test solution to simulate a marine environment. Corrosion monitoring was evaluated using the corrosion potential (E) according to ASTM C876 and the linear polarization resistance (LPR) according to ASTM G59. The results show that AISI 304 SS reinforcements yielded the best corrosion behavior, with E values mainly pertaining to the region of 10% probability of corrosion, and corrosion current density (i) values indicating passivity after 105 days of experimentation and low probability of corrosion for the remainder of the test period.This research was funded by PRODEP for the support granted by the SEP, to the Academic Body UV-CA-458 “Sustainability and Durability of Materials for Civil Infrastructure”, within the framework of the 2018 Call for the Strengthening of Academic Bodies with IDCA 28593. Funding support from The University of Akron, Fellowship Program FRC–207367
    corecore