6 research outputs found

    Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Desalination is increasingly put forward as a sustainable local solution to water scarcity in combination with the exploitation of renewable energy sources. However, the complexity of the resource nexus entails the unavoidable existence of pros and cons across its various dimensions that can only be assessed at different scales of analysis. In turn, these pros and cons entail different winners and losers among the different social actors linked through the nexus. To address these challenges, a novel approach to resource nexus assessment is put forward, based on multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM) and recognizing the resource nexus as a wicked problem. The integrated representation identifies the existence of biophysical constraints determined by processes both under human control (in the technosphere) and beyond human control (in the biosphere). The approach is illustrated with a local case study of desalination in the Canary Islands, Spain. The material presented has been generated in the context of the project "Moving towards adaptive governance in complexity: Informing nexus security" (MAGIC) for use in participatory processes of co-production of knowledge claims about desalination, a prerequisite for informed policy deliberation

    SWRO Brine Characterisation and Critical Analysis of Its Industrial Valorisation: A Case Study in the Canary Islands (Spain)

    No full text
    The most recent years of research have shifted the perception of desalination brine from being waste to a high-value resource, in consonance with a circular economy perspective. The Canary Islands, containing the largest number of desalination plants per square kilometre in the world, are a perfect location to study its characteristics and evaluate its potential. A total of 10 heterogeneous seawater reverse osmosis plants were selected to determine the brine’s physicochemical characterisation, comprising 37 parameters, and its correlation to the technical and operational aspects of the desalination plants. The results show a stable narrow range of the percentage of major ions concentration in relation to the total dissolved solids (55% Cl−, 29.5% Na+, 8% SO42−, 4% Mg2+, 1.5% Ca2+, 1.2% K+, 0.5% HCO3−, and 0.2% Br−) irrespective of specific differences between plants. The results obtained in this study are highly beneficial to industrial suppliers and future users of desalination brine valorisation (DBV) technologies, allowing an estimation of the chemical composition of a brine through knowledge only of its conductivity. Such information is crucial before investing in and optimizing DBV technologies. Nonetheless, from an environmental, economic, operational, energy-based, and R&D point of view, several improvements are required to promote their large-scale feasibility and viability

    Machine Learning Models Applied to Manage the Operation of a Simple SWRO Desalination Plant and Its Application in Marine Vessels

    No full text
    In this work, two machine learning techniques, specifically decision trees (DTs) and support vector machines (SVMs), were applied to optimize the performance of a seawater reverse osmosis (SWRO) desalination plant with a capacity of 100 m3 per day. The input variables to the system were seawater pH, seawater conductivity, and three requirements: permeate flow rate, permeate conductivity, and total energy consumed by the desalination plant. These requirements were decided based on a cost function that prioritizes the water needs in a vessel and the maximum possible energy savings. The intelligent system modifies the actuators of the plant: feed flow rate control and high-pressure pump (HPP) operating pressure. This tool is proposed for the optimal use of desalination plants in marine vessels. Although both machine learning techniques output satisfactory results, it was concluded that the DTs technique (HPP pressure: root mean square error (RMSE) = 0.0104; feed flow rate: RMSE = 0.0196) is more accurate than SVMs (HPP pressure: RMSE = 0.0918; feed flow rate: RMSE = 0.0198) based on the metrics used. The final objective of the paper is to extrapolate the implementation of this smart system to other shipboard desalination plants and optimize their performance

    Assessment of Processes to Increase the Useful Life and the Reuse of Reverse Osmosis Elements in Cape Verde and Macaronesia

    No full text
    Reverse osmosis membranes could be reused in the same or another desalination plant by replacing the membranes in the dirtiest first positions with those in the least damaged last positions, also changing the best first stage membranes to the second and vice versa. The useful life of these membranes could be extended by chemical cleaning and giving them a second life in tertiary treatment plants, as well as reusing them in industrial processes where special reverse osmosis membranes are used and degrade rapidly, in processes with leachates from landfill waste, and also an interesting option is the oxidation of reverse osmosis elements to obtain nanofiltration, ultrafiltration or microfiltration membranes for the elimination of physical dirt. The main categories of recycling by thermal processing commonly used in the industry include incineration and pyrolysis to produce energy, gas and fuel. These processes can be applied to mixed plastic waste, such as the combination of materials used in the manufacture of reverse osmosis membranes. Recycling of reverse osmosis elements from desalination plants is shown to be an opportunity, and pioneering initiatives are already underway in Europe. Energy recovery via incineration is feasible but is not considered in line with the environmental, social and political problems it may generate. However, the recycling of reverse osmosis elements via the pyrolytic industry for fuel production can be centralized in a new industry already planned in the Macaronesia area, and all obsolete osmosis membranes can be sent there. This is a technically and economically viable business opportunity with a promising future in today’s recycling market, as discussed in the article

    Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation

    No full text
    Unidad de excelencia María de Maeztu MdM-2015-0552Desalination is increasingly put forward as a sustainable local solution to water scarcity in combination with the exploitation of renewable energy sources. However, the complexity of the resource nexus entails the unavoidable existence of pros and cons across its various dimensions that can only be assessed at different scales of analysis. In turn, these pros and cons entail different winners and losers among the different social actors linked through the nexus. To address these challenges, a novel approach to resource nexus assessment is put forward, based on multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM) and recognizing the resource nexus as a wicked problem. The integrated representation identifies the existence of biophysical constraints determined by processes both under human control (in the technosphere) and beyond human control (in the biosphere). The approach is illustrated with a local case study of desalination in the Canary Islands, Spain. The material presented has been generated in the context of the project "Moving towards adaptive governance in complexity: Informing nexus security" (MAGIC) for use in participatory processes of co-production of knowledge claims about desalination, a prerequisite for informed policy deliberation

    Technical/thermodynamic feasibility study and design of a floating photovoltaic solar field in the seawater intake pond of the Las Palmas III desalination plant (Gran Canaria)

    No full text
    Este estudio se propone ante la necesidad de acometer soluciones a diversos problemas operativos existentes en la Planta Desalinizadora de agua de mar por ósmosis inversa Las Palmas III (EDAM Las Palmas III) explotada por la Empresa Mixta de Aguas de Las Palmas S.A (EMALSA). Básicamente se detecta un aumento de la temperatura observado en los últimos años en el agua de mar de la balsa de captación. Esta agua de mar se utiliza tanto en el proceso de la EDAM, como en el proceso de refrigeración de la Central Térmica de Jinámar de ENDESA adyacente a la misma.Proyecto europeo EEERes 4water Promoting Energy-Water nexus resource efficiency through renewable energy and energy efficiency.No data 2020UE
    corecore