47 research outputs found

    Identification of FKBP51 as a novel susceptibility gene for metabolic dysfunction

    Get PDF

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain

    Focus on FKBP51: A molecular link between stress and metabolic disorders

    No full text
    Background: Obesity, Type 2 diabetes (T2D) as well as stress-related disorders are rising public health threats and major burdens for modern society. Chronic stress and depression are highly associated with symptoms of the metabolic syndrome, but the molecular link is still not fully understood. Furthermore, therapies tackling these biological disorders are still lacking. The identification of shared molecular targets underlying both pathophysiologies may lead to the development of new treatments. The FK506 binding protein 51 (FKBP51) has recently been identified as a promising therapeutic target for stress-related psychiatric disorders and obesity-related metabolic outcomes. Scope of the review: The aim of this review is to summarize current evidence of in vitro, preclinical, and human studies on the stress responsive protein FKBP51, focusing on its newly discovered role in metabolism. Also, we highlight the therapeutic potential of FKBP51 as a new treatment target for symptoms of the metabolic syndrome. Major conclusions: We conclude the review by emphasizing missing knowledge gaps that remain and future research opportunities needed to implement FKBP51 as a drug target for stress-related obesity or T2D. (C) 2019 The Authors. Published by Elsevier GmbH

    Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice

    No full text
    Background: There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. Methods: We used a mouse model of maternal diet-induced obesity to investigate whether maternal obesity affects the response to adult chronic stress exposure in young adult (3-month-old) and aged adult (12-month-old) offspring. Results: Long-lasting, delayed impairments to anxiety-like behaviors and stress coping strategies resulted on account of prenatal exposure to maternal obesity. Although maternal obesity did not change the offspring's behavioral response to chronic stress per se, we demonstrate that the behavioral outcomes induced by prenatal exposure to maternal obesity parallel the deleterious effects of adult chronic stress exposure in aged male mice. We found that the glucocorticoid receptor (GR, Nr3c1) is upregulated in various hypothalamic nuclei on account of maternal obesity. In addition, gene expression of a known regulator of the GR, FKBP51, is increased specifically within the paraventricular nucleus. Conclusions: These findings indicate that maternal obesity parallels the deleterious effects of adult chronic stress exposure, and furthermore identifies GR/FKBP51 signaling as a novel candidate pathway regulated by maternal obesity. (C) 2015 S. Karger AG, Base

    Stress and glucocorticoid modulation of feeding and metabolism

    No full text
    This perspective highlights research presented as part of the symposium entitled, "Stress and Glucocorticoid Modulation of Feeding and Metabolism" at the 2018 Neurobiology of Stress Workshop held in Banff, AB, Canada. The symposium comprised five researchers at different career stages who each study different aspects of the interaction between the stress response and metabolic control. Their collective results reveal the complexity of this relationship in terms of behavioural and physiological outcomes. Their work emphasizes the need to consider the level of interaction (cellular, tissue, systems) as well as the timing and context in which the interaction is studied. Rather than a comprehensive review on the work presented at the Symposium, here we discuss recurring themes that emerged at the biennial workshop, which address new avenues of research that will drive the field forward

    Interplay between diet-induced obesity and chronic stress in mice: potential role of FKBP51

    No full text
    While it is known that stress promotes obesity, the effects of stress within an obesogenic context are not so clear and molecular targets at the interface remain elusive. The FK506-binding protein 51 (FKBP51, gene: Fkbp5) has been identified as a target gene implicated in the development of stress-related psychiatric disorders and is a possible candidate for involvement in stress and metabolic regulation. The aims of the current study are to investigate the interaction between chronic stress and an obesogenic context and to additionally examine whether FKBP51 is involved in this interaction. For this purpose, male C57BL/6 mice were exposed to a high-fat diet for 8 weeks before being challenged with chronic social defeat stress. Herein, we demonstrate that chronic stress induces hypophagia and weight loss, ultimately improving features arising from an obesogenic context, including glucose tolerance and levels of insulin and leptin. We show that Fkbp5 expression is responsive to diet and stress in the hypothalamus and hippocampus respectively. Furthermore, under basal conditions, higher levels of hypothalamic Fkbp5 expression were related to increased body weight gain. Our data indicate that Fkbp5 may represent a novel target in metabolic regulation

    Stress and glucocorticoid modulation of feeding and metabolism

    No full text
    This perspective highlights research presented as part of the symposium entitled, “Stress and Glucocorticoid Modulation of Feeding and Metabolism” at the 2018 Neurobiology of Stress Workshop held in Banff, AB, Canada. The symposium comprised five researchers at different career stages who each study different aspects of the interaction between the stress response and metabolic control. Their collective results reveal the complexity of this relationship in terms of behavioural and physiological outcomes. Their work emphasizes the need to consider the level of interaction (cellular, tissue, systems) as well as the timing and context in which the interaction is studied. Rather than a comprehensive review on the work presented at the Symposium, here we discuss recurring themes that emerged at the biennial workshop, which address new avenues of research that will drive the field forward
    corecore