31 research outputs found

    Warum Ernährungsmanagement mehr Aufmerksamkeit braucht

    Get PDF
    Ernährungsmanagement ist in Alters- und Pflegeheimen ein noch weitgehend unbeachtetes Gebiet. Dabei leiden viele ihrer Bewohner*innen an Mangelernährung. Gesundheitsfachpersonen sollten dieses Thema gemeinsam angehen

    Excitonic Splitting and Vibronic Coupling Analysis of the m -Cyanophenol Dimer

    Get PDF
    The S1/S2 splitting of the m-cyanophenol dimer, (mCP)2 and the delocalization of its excitonically coupled S1/S2 states are investigated by mass-selective two-color resonant two-photon ionization and dispersed fluorescence spectroscopy, complemented by a theoretical vibronic coupling analysis based on correlated ab initio calculations at the approximate coupled cluster CC2 and SCS-CC2 levels. The calculations predict three close-lying ground-state minima of (mCP)2: The lowest is slightly Z-shaped (Ci-symmetric); the second-lowest is <5 cm–1 higher and planar (C2h). The vibrational ground state is probably delocalized over both minima. The S0 → S1 transition of (mCP)2 is electric-dipole allowed (Ag → Au), while the S0 → S2 transition is forbidden (Ag → Ag). Breaking the inversion symmetry by 12C/13C- or H/D-substitution renders the S0 → S2 transition partially allowed; the excitonic contribution to the S1/S2 splitting is Δexc = 7.3 cm–1. Additional isotope-dependent contributions arise from the changes of the m-cyanophenol zero-point vibrational energy upon electronic excitation, which are Δiso(12C/13C) = 3.3 cm–1 and Δiso(H/D) = 6.8 cm–1. Only partial localization of the exciton occurs in the 12C/13C and H/D substituted heterodimers. The SCS-CC2 calculated excitonic splitting is Δel = 179 cm–1; when multiplying this with the vibronic quenching factor Γvibronexp = 0.043, we obtain an exciton splitting Δvibronexp = 7.7 cm–1, which agrees very well with the experimental Δexc = 7.3 cm–1. The semiclassical exciton hopping times range from 3.2 ps in (mCP)2 to 5.7 ps in the heterodimer (mCP-h)·(mCP-d). A multimode vibronic coupling analysis is performed encompassing all the vibronic levels of the coupled S1/S2 states from the v = 0 level to 600 cm–1 above. Both linear and quadratic vibronic coupling schemes were investigated to simulate the S0 → S1/S2 vibronic spectra; those calculated with the latter scheme agree better with experiment

    The elusive S2 state, the S1/S2 splitting, and the excimer states of the benzene dimer

    Get PDF
    We observe the weak S 0 → S 2 transitions of the T-shaped benzene dimers (Bz)2 and (Bz-d 6)2 about 250 cm−1 and 220 cm−1 above their respective S 0 → S 1 electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S 0 → S 2 electronic oscillator strength f el (S 2) is ∼10 times smaller than f el (S 1) and the S 2 state lies ∼240 cm−1 above S 1, in excellent agreement with experiment. The S 0 → S 1 (ππ ∗) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S 0 → S 2 transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f el (S 1) and f el (S 2), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S 1 and S 2 excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz)2 ground-state surface allow to construct approximate S 1 and S 2 potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f el (S 1) and f el (S 2) transition dipole moments at the C 2v -symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S 0 → S 1 and S 0 → S 2 transition-dipole moment surfaces of (Bz)2 restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S 0 → S 1/S 2 spectra of (Bz)2 are compared to those of imidazole ⋅ (Bz)2, which has a rigid triangular structure with a tilted (Bz)2 subunit. The S 0 → S 1/ S 2 transitions of imidazole-(benzene)2 lie at similar energies as those of (Bz)2, confirming our assignment of the (Bz)2 S 0 → S 2 transition

    Do Hydrogen Bonds Influence Excitonic Splittings?

    Get PDF
    The excitonic splitting and vibronic quenching of the inversion-symmetric homodimers of benzonitrile, (BN)2, and meta-cyanophenol, (mCP)2, are investigated by two-color resonant two-photon ionization spectroscopy. These systems have very different hydrogen bond strengths: the OH···N≡C bonds in (mCP)2 are ∼10 times stronger than the CH···N≡C hydrogen bonds in (BN)2. In (BN)2 the S 0(1 A g) → S 1(1 A g) transition is electric-dipole forbidden, while the S 0(1 A g) → S2(1 B u) transition is allowed. The opposite holds for (mCP)2 due to the different transition dipole moment vector alignment. The S 0 → S 1 S 2 spectra of the dimers are compared and their excitonic splittings and vibronic quenchings are investigated by measuring the 13C-substituted heterodimer isotopomers, for which the centrosymmetry is broken and both transitions are allowed. The excitonic splittings are determined as Δexc = 2.1 cm–1 for (BN)2 and Δexc = 7.3 cm–1 for (mCP)2. The latter exhibits a much stronger vibronic quenching, as the purely electronic splitting resulting from ab initio calculations is determined to be Δcalc = 179 cm–1, while in (BN)2 the calculated splitting is Δcalc = 10 cm–1. The monomer site-shifts upon dimerization and comparing certain vibrations that deform the hydrogen bonds confirm that the OH···N≡C hydrogen bond is much stronger than the CH···N≡C bond. We show that the H-bonds have large effects on the spectral shifts, but little or no influence on the excitonic splitting

    Experimental and Calculated Spectra of π-Stacked Mild Charge-Transfer Complexes: Jet-Cooled Perylene·(Tetrachloroethene) n , n = 1,2

    Get PDF
    The S0 ↔ S1 spectra of the mild charge-transfer (CT) complexes perylene·tetrachloroethene (P·4ClE) and perylene·(tetrachloroethene)2 (P·(4ClE)2) are investigated by two-color resonant two-photon ionization (2C-R2PI) and dispersed fluorescence spectroscopy in supersonic jets. The S0 → S1 vibrationless transitions of P·4ClE and P·(4ClE)2 are shifted by δν = −451 and −858 cm–1 relative to perylene, translating to excited-state dissociation energy increases of 5.4 and 10.3 kJ/mol, respectively. The red shift is ∼30% larger than that of perylene·trans-1,2-dichloroethene; therefore, the increase in chlorination increases the excited-state stabilization and CT character of the interaction, but the electronic excitation remains largely confined to the perylene moiety. The 2C-R2PI and fluorescence spectra of P·4ClE exhibit strong progressions in the perylene intramolecular twist (1au) vibration (42 cm–1 in S0 and 55 cm–1 in S1), signaling that perylene deforms along its twist coordinate upon electronic excitation. The intermolecular stretching (Tz) and internal rotation (Rc) vibrations are weak; therefore, the P·4ClE intermolecular potential energy surface (IPES) changes little during the S0 ↔ S1 transition. The minimum-energy structures and inter- and intramolecular vibrational frequencies of P·4ClE and P·(4ClE)2 are calculated with the dispersion-corrected density functional theory (DFT) methods B97-D3, ωB97X-D, M06, and M06-2X and the spin-consistent-scaled (SCS) variant of the approximate second-order coupled-cluster method, SCS-CC2. All methods predict the global minima to be π-stacked centered coplanar structures with the long axis of tetrachloroethene rotated by τ ≈ 60° relative to the perylene long axis. The calculated binding energies are in the range of −D0 = 28–35 kJ/mol. A second minimum is predicted with τ ≈ 25°, with ∼1 kJ/mol smaller binding energy. Although both monomers are achiral, both the P·4ClE and P·(4ClE)2 complexes are chiral. The best agreement for adiabatic excitation energies and vibrational frequencies is observed for the ωB97X-D and M06-2X DFT methods
    corecore