411 research outputs found

    Duchenne and Becker muscular dystrophy prevalence in South Africa and molecular findings in 128 persons affected

    Get PDF
    A genetic service for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) was initiated in Cape Town in 1987. Of the 143 DMD patients diagnosed during the period 1987-1992, 66 had a familial pattern of inheritance and 77 were apparently sporadic. Twenty BMD patients were identified, of whom 12 had other affected relatives and 8 were sporadic. Overall minimum prevalence rates of 1/100 000 for DMD and 1/55 000 for BMD were calculated. A markedly low DMD prevalence in the indigenous black population (1/250000) contributed tothe overall low DMD prevalence in South Africa when compared with that in the UK (1/40 000).By means of molecular methods, the diagnosis in 42% of the affected DMD males was confirmed by detection of deletions in the dystrophin gene. Deletions were identified in 50% of Indian, white and mixed ancestry patients. In contrast, only 22% of blacks had identifiable deletions.DMD appears to be underrepresented in the black population; the low deletion frequency in this group suggests that unique mutations not detectable by methods used in this study may be more frequent in these patients than in the other populations. The increased DMD frequency in Indians corroborates findings reported from the UK

    Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines

    Full text link
    The optical luminous quasar PG0043+039 has not been detected before in deep X-ray observations indicating the most extreme optical-to-X-ray slope index αox{\alpha}_{ox} of all quasars. This study aims to detect PG0043+039 in a deep X-ray exposure. Furthermore, we wanted to check out whether this object shows specific spectral properties in other frequency bands. We took deep X-ray (XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our deep X-ray exposure. The steep αox=−2.37±0.05{\alpha}_{ox} = -2.37 {\pm} 0.05 gradient is consistent with an unusual steep gradient Fν∼ναF_{\nu} {\sim} {\nu}^{\alpha} with α=−2.67±0.02{\alpha} = -2.67 {\pm} 0.02 seen in the UV/far-UV continuum. The optical/UV continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very peculiar because it shows broad humps in addition to known emission lines. A modeling of these observed humps with cyclotron lines can explain their wavelength positions, their relative distances, and their relative intensities. We derive plasma temperatures of T ∼{\sim} 3keV and magnetic field strengths of B ∼{\sim} 2 ×108{\times} 10^8 G for the line-emitting regions close to the black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres

    A long hard look at the minimum state of PG 2112+059 with XMM-Newton

    Get PDF
    XMM-Newton successfully detected the minimum state of PG 2112+059 during a short snapshot observation and performed a long follow-up observation. The high signal-to-noise spectra are modelled assuming different emission scenarios and compared with archival spectra taken by XMM-Newton and Chandra. The PG 2112+059 X-ray spectra acquired in May 2007 allowed the detection of a weak iron fluorescent line, which is interpreted as being caused by reflection from neutral material at some distance from the primary X-ray emitting source. The X-ray spectra of PG 2112+059 taken at five different epochs during different flux states can be interpreted within two different scenarios. The first consists of two layers of ionised material with column densities of N_H ~5 x 10^22 cm^-2 and N_H ~3.5 x 10^23 cm^-2, respectively. The first layer is moderately ionised and its ionisation levels follow the flux changes, while the other layer is highly ionised and does not show any correlation with the flux of the source. The spectra can also be interpreted assuming reflection by an ionised accretion disk seen behind a warm absorber. The warm absorber ionisation is consistent with being correlated with the flux of the source, which provides an additional degree of self-consistency with the overall reflection-based model. We explain the spectral variability with light bending according to the models of Miniutti and Fabian and constrain the black hole spin to be a/M > 0.86. Both scenarios also assume that a distant cold reflector is responsible for the Fe K \alpha emission line. Light bending provides an attractive explanation of the different states of PG 2112+059 and may also describe the physical cause of the observed properties of other X-ray weak quasars.Comment: 15 pages, 12 figures, A&A latex, accepted for publication in Astronomy & Astrophysic

    The structure of the X-ray absorber in Mrk 915 revealed by Swift

    Get PDF
    In this paper we present the results obtained with a monitoring programme (23 days long) performed with Swift-XRT on the local Seyfert galaxy Mrk 915. The light-curve analysis shows a significant count rate variation (about a factor of 2-3) on a time-scale of a few days, while the X-ray colours show a change in the spectral curvature below 2 keV and the presence of two main spectral states. From the spectral analysis we find that the observed variations can be explained by the change of the intrinsic nuclear power (about a factor of 1.5) coupled with a change of the properties of an ionized absorber. The quality of the data prevents us from firmly establishing if the spectral variation is due to a change in the ionization state and/or in the covering factor of the absorbing medium. The latter scenario would imply a clumpy structure of the ionized medium. By combining the information provided by the light curve and the spectral analyses, we can derive some constraints on the location of the absorber under the hypotheses of either homogeneous or clumpy medium. In both cases, we find that the absorber should be located inside the outer edge of an extended torus and, in particular, under the clumpy hypothesis, it should be located near, or just outside, to the broad emission line region.Comment: 8 pages, 6 figures, 1 table. Accepted for publication on MNRA

    XMM-Newton and NuSTAR joint observations of Mrk 915: a deep look into the X-ray properties

    Get PDF
    We report on the X-ray monitoring programme (covering slightly more than 11 days) carried out jointly by XMM-Newton and NuSTAR on the intermediate Seyfert galaxy Mrk 915. The light curves extracted in different energy ranges show a variation in intensity but not a significant change in spectral shape. The X-ray spectra reveal the presence of a two-phase warm absorber: a fully covering mildly ionized structure [log xi/(erg cm/s)~2.3, NH~1.3x10^21 cm-2] and a partial covering (~90 per cent) lower ionized one [log xi/(erg cm/s)~0.6, NH~2x10^22 cm-2]. A reflection component from distant matter is also present. Finally, a high-column density (NH~1.5x10^23 cm-2) distribution of neutral matter covering a small fraction of the central region is observed, almost constant, in all observations. Main driver of the variations observed between the datasets is a decrease in the intrinsic emission by a factor of ~1.5. Slight variations in the partial covering ionized absorber are detected, while the data are consistent with no variation of the total covering absorber. The most likely interpretation of the present data locates this complex absorber closer to the central source than the narrow line region, possibly in the broad line region, in the innermost part of the torus, or in between. The neutral obscurer may either be part of this same stratified structure or associated with the walls of the torus, grazed by (and partially intercepting) the line of sight.Comment: 14 pages, 10 figures, 4 tables. Accepted for publication in MNRA

    X-ray observation of ULAS J1120+0641, the most distant quasar at z=7.08

    Full text link
    We aim at probing the emission mechanism of the accreting super massive black holes in the high redshift Universe. We study the X-ray spectrum of ULAS1120+0641, the highest redshift quasar detected so far at z=7.085, which has been deeply observed (340 ks) by XMM-Newton. Despite the long integration time the spectral analysis is limited by the poor statistics, with only 150 source counts being detected. We measured the spectrum in the 2-80 keV rest-frame (0.3-10 keV observed) energy band. Assuming a simple power law model we find a photon index of 2.0+/-0.3 and a luminosity of 6.7+/-0.3 10^44 erg/s in the 2-10 keV band, while the intrinsic absorbing column can be only loosely constrained (NH< 1E23 cm^-2). Combining our data with published data we calculate that the X-ray-to-optical spectral index alpha_OX is1.8+/-0.1, in agreement with the alpha_OX-UV luminosity correlation valid for lower redshift quasars. We expanded to high energies the coverage of the spectral energy distribution of ULAS1120+0641. This is the second time that a z >6 quasar has been investigated through a deep X-ray observation. In agreement with previous studies of z~6 AGN samples, we do not find any hint of evolution in the broadband energy distribution. Indeed from our dataset ULAS 1120+0641 is indistinguishable from the population of optically bright quasar at lower redshift.Comment: 5 pages, 4 figures, A&A in press; updated with the accepted versio

    Mining the XRT archive to probe the X-ray absorber structure in the AGN population

    Get PDF
    One of the key ingredients of the Unified Model of Active Galactic Nuclei (AGN) is the presence of a torus-like optically thick medium composed by dust and gas around the putative supermassive black hole. However, the structure, size and composition of this circumnuclear medium are still matter of debate. To this end, the search for column density variations through X-ray monitoring on different timescales (months, weeks and few days) is fundamental to constrain size, kinematics and location of the X-ray absorber(s). Here we describe our project of mining the Swift-XRT archive to assemble a sample of AGN with extreme column density variability and determining the physical properties of the X-ray absorber(s). We also present the results obtained from a daily-weekly Swift-XRT follow-up monitoring recently performed on one of the most interesting new candidates for variability discovered so far, Mrk 915.Comment: 6 pages, 3 figures. To appear in Proceedings of Science for the "Swift: 10 years of Discovery" meeting, held in Rome (2-5 December 2014

    NuSTAR reveals that the heavily obscured nucleus of NGC 2785 was the contaminant of IRAS 09104+4109 in the BeppoSAX/PDS hard X-rays

    Get PDF
    The search for heavily obscured active galactic nuclei (AGNs) has been revitalized in the last five years by NuSTAR, which has provided a good census and spectral characterization of a population of such objects, mostly at low redshift, thanks to its enhanced sensitivity above 10 keV compared to previous X-ray facilities, and its hard X-ray imaging capabilities. We aim at demonstrating how NGC2785, a local (z=0.009) star-forming galaxy, is responsible, in virtue of its heavily obscured active nucleus, for significant contamination in the non-imaging BeppoSAX/PDS data of the relatively nearby (~17 arcmin) quasar IRAS 09104+4109 (z=0.44), which was originally mis-classified as Compton thick. We analyzed ~71 ks NuSTAR data of NGC2785 using the MYTorus model and provided a physical description of the X-ray properties of the source for the first time. We found that NGC2785 hosts a heavily obscured (NH~3*10^{24} cm^{-2}) nucleus. The intrinsic X-ray luminosity of the source, once corrected for the measured obscuration (L(2-10 keV)~10^{42} erg/s), is consistent within a factor of a few with predictions based on the source mid-infrared flux using widely adopted correlations from the literature. Based on NuSTAR data and previous indications from the Neil Gehrels Swift Observatory (BAT instrument), we confirm that NGC2785, because of its hard X-ray emission and spectral shape, was responsible for at least one third of the 20-100 keV emission observed using the PDS instrument onboard BeppoSAX, originally completely associated with IRAS 09104+4109. Such emission led to the erroneous classification of this source as a Compton-thick quasar, while it is now recognized as Compton thin.Comment: Six pages, 3 figures, A&A, in pres

    The XMM-Newton view of the relativistic spectral features in AXJ0447-0627

    Full text link
    The XMM-Newton observation of the optically Type 1 AGN AXJ0447-0627 (z=0.214) unambiguously reveals a complex, bright and prominent set of lines in the 4-8 keV rest frame energy range. Although, from a phenomenological point of view, the observed properties can be described by a simple power law model plus 5 narrow Gaussian lines (at rest frame energies of nearly 4.49, 5.55, 6.39, 7.02 and 7.85 keV), we find that a model comprising a power law (Gamma of the order of 2.2), a reflected relativistic continuum, a narrow Fe I Kalpha line from neutral material as well as a broad Fe Kalpha relativistic line from a ionized accretion disk represents a good physical description of the data. The ''double horned'' profile of the relativistic line implies an inclination of the accretion disk of the order of 45 degree, and an origin in a narrow region of the disk, from R_in of the order of 19 GM/c^2 to R_out of the order of 30 GM/c^2. The narrow Fe I Kalpha line from neutral material is probably produced far from the central black hole, most likely in the putative molecular torus. Although some of these properties have been already found in other Type 1 AGN and discussed in the literature, at odd with the objects reported so far we measure high equivalent widths (EWs) of the observed lines: nearly 1.4 keV for the ``double horned'' relativistic line and nearly 0.4 keV for the narrow line.Comment: 16 pages, 3 figures, Latex manuscript; accepted for publication in Ap

    WISE colours and star-formation in the host galaxies of radio-loud narrow-line Seyfert 1

    Get PDF
    We investigate the mid-infrared properties of the largest (42 objects) sample of radio-loud narrow-line Seyfert 1 (RL NLS1) collected to date, using data from the Wide-field Infrared Survey Explorer (WISE). We analyse the mid-IR colours of these objects and compare them to what is expected from different combinations of AGN and galaxy templates. We find that, in general, the host-galaxy emission gives an importan contribution to the observed mid-IR flux in particular at the longest wavelengths (W3, at 12micron, and W4, at 22micron). In about half of the sources (22 objects) we observe a very red mid-IR colour (W4-W3>2.5) that can be explained only using a starburst galaxy template (M82). Using the 22micron luminosities, corrected for the AGN contribution, we have then estimated the star-formation rate for 20 of these "red" RL NLS1, finding values ranging from 10 to 500 Msun/y. For the RL NLS1 showing bluer colours, instead, we cannot exclude the presence of a star-forming host galaxy although, on average, we expect a lower star-formation rate. Studying the radio (1.4GHz) to mid-IR (22micron) flux ratios of the RL NLS1 in the sample we found that in ~10 objects the star-forming activity could represent the most important component also at radio frequencies, in addition (or in alternative) to the relativistic jet. We conclude that both the mid-IR and the radio emission of RL NLS1 are a mixture of different components, including the relativistic jet, the dusty torus and an intense star-forming activity.Comment: Accepted for publication in MNRAS, 11 pages, 7 figures, 2 table
    • …
    corecore