48 research outputs found

    The role of edge-driven convection in the generation ofvolcanism – Part 2: Interaction with mantle plumes, applied to the Canary Islands

    Get PDF
    In the eastern Atlantic Ocean, several volcanic archipelagos are located close to the margin of the African continent. This configuration has inspired previous studies to suggest an important role of edge-driven convection (EDC) in the generation of intraplate magmatism. In a companion paper (Manjón-Cabeza Córdoba and Ballmer, 2021), we showed that EDC alone is insufficient to sustain magmatism of the magnitude required to match the volume of these islands. However, we also found that EDC readily develops near a step of lithospheric thickness, such as the oceanic–continental transition (“edge”) along the western African cratonic margin. In this work, we carry out 3D numerical models of mantle flow and melting to explore the possible interactions between EDC and mantle plumes. We find that the stem of a plume that rises close to a lithospheric edge is significantly deflected ocean-ward (i.e., away from the edge). The pancake of ponding hot material at the base of the lithosphere is also deflected by the EDC convection cell (either away or towards the edge). The amount of magmatism and plume deflection depends on the initial geometric configuration, i.e., the distance of the plume from the edge. Plume buoyancy flux and temperature also control the amount of magmatism, and influence the style and extent of plume–EDC interaction. Finally, comparison of model predictions with observations reveals that the Canary plume may be significantly affected and deflected by EDC, accounting for widespread and coeval volcanic activity. Our work shows that many of the peculiar characteristics of eastern Atlantic volcanism are compatible with mantle plume theory once the effects of EDC on plume flow are considered.</p

    Plume-ridge interactions: ridgeward versus plate-drag plume flow

    Get PDF
    The analysis of mid-ocean ridges and hotspots that are sourced by deep-rooted mantle plumes allows us to get a glimpse of mantle structure and dynamics. Dynamical interaction between ridge and plume processes have been widely proposed and studied, particularly in terms of ridgeward plume flow. However, the effects of plate drag on plume-lithosphere and plume-ridge interaction remain poorly understood. In particular, the mechanisms that control plume flow towards vs. away from the ridge have not yet been systematically studied. Here, we use 2D thermomechanical numerical models of plume-ridge interaction to systematically explore the effects of (i) ridge-spreading rate, (ii) initial plume head radius and (iii) plume-ridge distance. Our numerical experiments suggest two different geodynamic regimes: (1) plume flow towards the ridge is favored by strong buoyant mantle plumes, slow spreading rates and small plume-ridge distances; (2) plume drag away from the ridge is in turn promoted by fast ridge spreading for small-To-intermediate plumes and large plume-ridge distances. We find that the pressure gradient between the buoyant plume and spreading ridge at first drives ridgeward flow, but eventually the competition between plate drag and the gravitational force of plume flow along the base of the sloping lithosphere controls the fate of plume (spreading towards vs. away from the ridge). Our results highlight that fast-spreading ridges exert strong plate-dragging force, which sheds new light on natural observations of largely absent plume-lithosphere interaction along fast-spreading ridges, such as the East Pacific Rise

    Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact

    Get PDF
    The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earth's mantle preserves ancient (or "primordial") heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earth's mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.Comment: Comments are welcom

    Double layering of a thermochemical plume in the upper mantle beneath Hawaii

    Get PDF
    According to classical plume theory, purely thermal upwellings rise through the mantle, pond in a thin layer beneath the lithosphere, and generate hotspot volcanism. Neglected by this theory, however, are the dynamical effects of compositional heterogeneity carried by mantle plumes even though this heterogeneity has been commonly identified in sources of hotspot magmas. Numerical models predict that a hot, compositionally heterogeneous mantle plume containing a denser eclogite component tends to pool at ∼300–410 km depth before rising to feed a shallower sublithospheric layer. This double-layered structure of a thermochemical plume is more consistent with seismic tomographic images at Hawaii than the classical plume model. The thermochemical structure as well as time dependence of plume material rising from the deeper into the shallower layer can further account for long-term fluctuations in volcanic activity and asymmetry in bathymetry, seismic structure, and magma chemistry across the hotspot track, as are observed

    Evidence for Melt Leakage from the Hawaiian Plume above the Mantle Transition Zone

    Get PDF
    Dehydration reactions at the top of the mantle transition zone (MTZ) can stabilize partial melt in a seismic low-velocity layer (LVL), but the seismic effects of temperature, melt and volatile content are difficult to distinguish. We invert P-to-S receiver function phases converted at the top and bottom of a LVL above the MTZ beneath Hawaii. To separate the thermal and melting related seismic anomalies, we carry out over 10 million rock physics inversions. These inversions account for variations arising from the Clapeyron slope of phase transition, bulk solid composition, dihedral angle, and mantle potential temperature. We use two independent seismic constraints to evaluate the temperature and shear wave speed within the LVL. The thermal anomalies reveal the presence of a hot and seismically slow plume stem surrounded by a “halo” of cold and fast mantle material. In contrast to this temperature distribution, the plume stem contains less than 0.5 vol% melt, while the surrounding LVL—within the coverage area—contains up to 1.7 vol% melt, indicating possible lateral transport of the melt. When compared to the melting temperatures of mantle rocks, the temperature within the LVL, calculated from seismic observations of MTZ thickness, suggests that the observed small degrees of melting are sustained by the presence of volatiles such as CO2 and H2O. We estimate the Hawaiian plume loses up to 1.9 Mt/yr H2O and 10.7 Mt/yr CO2 to the LVL, providing a crucial missing flux for global volatile cycles

    Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump

    Get PDF
    A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800–1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump1,2. The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction3, accelerates plume ascent4 and inhibits chemical mixing5. However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump1,2. The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection5–7. The high Mg:Si ratio of the upper mantle relative to chondrites8, the anomalous 142Nd:144Nd, 182W:184W and 3He:4He isotopic ratios in hot-spot magmas9,10, the plume deflection4 and slab stagnation in the mid-mantle3 as well as the sparse observations of seismic anisotropy11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth

    Plausible Constraints on the Range of Bulk Terrestrial Exoplanet Compositions in the Solar Neighborhood

    Get PDF
    Rocky planet compositions regulate planetary evolution by affecting core sizes, mantle properties, and melting behaviors. Yet, quantitative treatments of this aspect of exoplanet studies remain generally underexplored. We attempt to constrain the range of potential bulk terrestrial exoplanet compositions in the solar neighborhood (<200 pc). We circumscribe probable rocky exoplanet compositions based on a population analysis of stellar chemical abundances from the Hypatia and GALAH catalogs. We apply a devolatilization model to simulate compositions of hypothetical, terrestrial-type exoplanets in the habitable zones around Sun-like stars, considering elements O, S, Na, Si, Mg, Fe, Ni, Ca, and Al. We further apply core-mantle differentiation by assuming constant oxygen fugacity, and model the consequent mantle mineralogy with a Gibbs energy minimization algorithm. We report statistics on several compositional parameters and propose a reference set of (21) representative planet compositions for use as end-member compositions in imminent modeling and experimental studies. We find a strong correlation between stellar Fe/Mg and metallic-core sizes, which can vary from 18 to 35 wt%. Furthermore, stellar Mg/Si gives a first-order indication of mantle mineralogy, with high-Mg/Si stars leading to weaker, ferropericlase-rich mantles, and low-Mg/Si stars leading to mechanically stronger mantles. The element Na, which modulates crustal buoyancy and mantle clinopyroxene fraction, is affected by devolatilization the most. While we find that planetary mantles mostly consist of Fe/Mg silicates, the core sizes and relative abundances of common minerals can nevertheless vary significantly among exoplanets. These differences likely lead to different evolutionary pathways among rocky exoplanets in the solar neighborhood
    corecore