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According to classical plume theory, purely thermal upwellings rise through the mantle, pond in a
thin layer beneath the lithosphere, and generate hotspot volcanism. Neglected by this theory, however,
are the dynamical effects of compositional heterogeneity carried by mantle plumes even though this
heterogeneity has been commonly identified in sources of hotspot magmas. Numerical models predict
that a hot, compositionally heterogeneous mantle plume containing a denser eclogite component tends to
pool at ∼300–410 km depth before rising to feed a shallower sublithospheric layer. This double-layered
structure of a thermochemical plume is more consistent with seismic tomographic images at Hawaii than
the classical plume model. The thermochemical structure as well as time dependence of plume material
rising from the deeper into the shallower layer can further account for long-term fluctuations in volcanic
activity and asymmetry in bathymetry, seismic structure, and magma chemistry across the hotspot track,
as are observed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Hotspots dominate volcanism interior to Earth’s tectonic plates
and are related to convective processes and chemical heterogene-
ity in the underlying mantle. The characteristics of the Hawaiian
hotspot, in particular, have been key to the development of clas-
sical plume theory, a well-established paradigm for understand-
ing the hotspot phenomenon (Morgan, 1972). According to this
theory, a high-temperature, buoyant plume rises vertically from
the base of the mantle to pond beneath the lithosphere in a
∼100-km-thick “pancake.” The ascending plume supports a broad
area of uplifted seafloor, known as the hotspot swell, and sus-
tains localized decompression melting that feeds age-progressive
volcanism on the overriding plate (Morgan, 1972; Sleep, 1990;
Ribe and Christensen, 1994, 1999).

Regional seismic tomographic studies of the Hawaiian hotspot
(Wolfe et al., 2009, 2011; Laske et al., 2011) have called aspects of
this model into question. Whereas anomalously low seismic veloc-
ities found in the lower and upper mantle confirm the presence of
a high-temperature mantle plume, the upper-mantle low-velocity
anomaly appears to have a greater vertical extent and is later-
ally more asymmetric about the island chain than predicted by
the classical plume theory (Figs. 1–2). In particular, the station-
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averaged, body-wave travel-time residuals across the Hawaiian
swell are larger than would be expected from a ∼100-km-thick
pancake on the basis of independent surface-wave constraints
(Wolfe et al., 2009, 2011; Laske et al., 2011). Moreover, episodic,
high-amplitude variations in volcanic flux along the chain are ev-
ident in the geologic record for the past ∼85 Myr (van Ark and
Lin, 2004; Vidal and Bonneville, 2004). These characteristics of the
Hawaiian hotspot suggest that plume upwelling is more complex
in space and time than portrayed by the classical model.

The classical plume theory emphasizes thermal buoyancy of
typical mantle material, or peridotite, to drive upwelling. However,
there is growing petrologic and geochemical evidence, especially at
Hawaii, for the presence of eclogite in the magma source region
(Hauri, 1996; Farnetani and Samuel, 2005; Sobolev et al., 2005,
2007; Herzberg, 2011; Jackson et al., 2012; Pietruszka et al., 2013),
thought to originate from subducted oceanic crust and to be en-
trained by upwelling flow in the lower mantle (e.g., Deschamps
et al., 2011). Because eclogite is denser than peridotite through-
out the upper mantle and most of the lower mantle (Hirose, 2002;
Aoki and Takahashi, 2004), the ascent of plumes containing both
peridotite and eclogite will be influenced by a competition be-
tween non-diffusive, negative chemical buoyancy and diffusive,
positive thermal buoyancy (e.g., Davaille, 1999). Compared with
classical thermal plumes, such thermochemical plumes therefore
display much more complex dynamics. For example, dense mate-
rials carried by the plume can induce large fluctuations in ascent
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Fig. 1. Overview of bathymetry, volcanism, and seismic tomography of the Hawaiian hotspot. Bathymetry (colors) and contours of shear-wave velocity anomaly (Wolfe et al.,
2009) at 200 km depth (1% contour interval for thick contours), two independent datasets, display consistent asymmetry about the island chain and indicate more buoyant
asthenosphere southwest than northeast of the island of Hawaii. Triangles show sites of recent (<1 Ma) volcanic activity (Hanyu et al., 2005; Robinson and Eakins, 2006;
Dixon et al., 2008). The pink dashed line denotes the location of the cross-section in Fig. 2. (For interpretation of the colors in this figure, the reader is referred to the web
version of this article.)
Fig. 2. Vertical cross-section of shear-wave velocity beneath Hawaii (Wolfe et al.,
2009) along a northwest–southeast-trending profile (denoted by the pink dashed
line in Fig. 1). (For interpretation of the colors in this figure, the reader is referred
to the web version of this article.)

rate and volume flux as well as asymmetric behavior (Farnetani
and Samuel, 2005; Lin and van Keken, 2005; Samuel and Bercovici,
2006; Kumagai et al., 2008; Sobolev et al., 2011). The effects of
phase changes can further modify this behavior, for example, by
affecting the rise of plumes through the boundary between the
lower and upper mantle at 660 km depth (Farnetani and Samuel,
2005; Tosi and Yuen, 2011). Moreover, phase changes in the depth
range of about 300–410 km can further increase the compositional
density excess of eclogitic material (Aoki and Takahashi, 2004), an
effect that is should strongly influence the dynamics of thermo-
chemical plumes, but one that has yet to be explored.

In order to study the dynamics and melting behavior of a ther-
mochemical plume in the upper mantle beneath the Hawaiian
hotspot and to address the enigmatic seismic structure imaged,
we have conducted three-dimensional numerical simulations. We
show that the interaction of a thermochemical plume with phase
changes can give rise to pooling of plume material in the mid up-
per mantle. Strong pulsations of plume flow out of this layer can
lead to temporal and spatial variations in the volume flux and
composition of hotspot magmatism, respectively. The behavior of
this double-layered, thermochemical plume indeed permits a range
of geophysical, geochemical, and geological observations to be ad-
dressed.

2. Methods and model description

The numerical simulations were produced using an extended
version (see Section 2.1) of the finite element code Citcom (Moresi
et al., 1996). The model domain of the numerical experiment
was 5280 km long, 3300 km wide, and 660 km deep. It was di-
vided into 768 × 512 × 96 finite elements with rectangular faces
and with the smallest elements (i.e., highest resolution) about
4.5 × 4.5 × 4.5 km in dimensions and located in the asthenosphere
near the hotspot. A velocity condition of 80 km/Myr was applied
at the top boundary to simulate Pacific plate motion. Accordingly,
the boundaries at the front and back were open to inflow and out-
flow, respectively. The other boundaries were closed except for a
small circular area of radius 360 km around the base of the plume
(which is centered 3135 km from the front boundary and 1650 km
from the sides) to allow influx of plume material. At the bottom
boundary, the plume’s thermal anomaly was specified to decrease
as a Gaussian function of radial distance from the center, with a
peak amplitude of 300 K and a half width of 75 km.

The modeled plume contains eclogite within a radial distance
rP of its center, and the eclogite makes up 15% of the mass of this
portion of the plume (cf. Sobolev et al., 2005). Outside of rP , the
ambient mantle was taken to contain no eclogite, but instead 15%
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Table 1
Governing parameters in the geodynamical models.

Parameter Description Value

cdry water content below which peridotite behaves like dry peridotite 6 (ppm)
c0 reference water content in hydrous peridotite 300 (ppm)
cP specific heat capacity 1250 (J kg−1 K−1)

DH2O water partitioning coefficient 0.01
E∗ activation energy 3 × 10−5 (J/mol)
g gravitational acceleration 9.8 (m/s2)
L latent heat of melt 5.6 × 105 (J/kg)

rplume half width of plume thermal anomaly 75 (km)
T0 reference temperature 1350 (◦C)
V ∗ activation volume 5 × 10−6 (m3/mol)
α thermal expansivity 3 × 10−5 (K−1)

γ adiabatic gradient 0.3 (K/km)
�Tplume plume peak thermal anomaly 300 (K)
�ρECL excess density of eclogite 110–220 (kg/m3) (see text)
�ρF density change with depletion −165 (kg/m3)
ζ melt lubrication exponent 40
ηeff effective asthenospheric viscosity 1.8 × 1019 (Pa s)
κ thermal diffusivity 10−6 (m2/s)
ξ depletion stiffening coefficient 310.6383
ρ0 reference density 3300 (kg/m3)
ρM density of melt 2800 (kg/m3)
ϕC critical porosity in peridotite 0.004
ϕC,PYX critical porosity in pyroxenite 0.1
ϕR residual porosity in peridotite 0.004
ϕR,PYX residual porosity in pyroxenite 0.05
of a refractory lithology that does not melt beneath the hotspot (cf.
Stracke et al., 2011). The remaining 85% of the mantle both within
and beyond rP was taken to be peridotite, of which 20% was hy-
drous peridotite with a water content of 300 ppm by weight, and
65% was dry peridotite. We considered two models with different
values of rP : 90 km in case A and 100 km in case B. Accordingly,
the excess temperature at the distance rP from the deep plume
axis is ∼110.4 K in case A and ∼87.3 K in case B, and only the
portion of the plume core with higher excess temperatures is as-
sumed to contain eclogite.

2.1. Numerical approach

Compared with the original, parallelized version of Citcom
(Moresi et al., 1996), the numerical code has been extended to
allow modeling of the dynamics and melting of thermochemical
plumes. The extended Boussinesq approximations have been used
to solve the equations of conservation of mass, momentum, and
energy. Numerical particles have been added to track composi-
tion (van Hunen et al., 2005). We have further developed schemes
for melting the various components (i.e., hydrous peridotite, dry
peridotite, eclogite, and pyroxenite), as well as parameterizations
of the effects of depletion in these components on density and
rheology (described below). The related strong, time-dependent
feedbacks required the application of a second-order Runge–Kutta
predictor–corrector scheme for time integration of the aforemen-
tioned equations.

2.2. Melting parameterization

The mantle source was assumed to be composed of a fine-scale
mixture of the distinct lithological components, each with a dif-
ferent melting behavior. For eclogite, we used the melting param-
eterization derived from the batch melting experiments of Yasuda
et al. (1994), and we assumed that eclogitic melts react instantly
with ambient lherzolites in a 1-to-1 fashion to form silica-free
garnet pyroxenites (Yaxley and Green, 1998; Sobolev et al., 2005,
2007). Eclogite melting and hybridization of the ambient mantle
were taken to consume and release equivalent amounts of latent
heat, respectively. Pyroxenites were assumed to melt at a much
shallower depth than eclogites, according to the experiments of
Pertermann and Hirschmann (2003). As soon as the volume frac-
tion (porosity) of pyroxenite melts relative to the pyroxenite part
of the mantle ϕPYX exceeded a critical threshold of ϕC,PYX = 10%,
about half of the pyroxenitic melts were extracted instantaneously
to leave a residual porosity of ϕR,PYX = 5%. We capped melting of
eclogite and pyroxenite at degrees of melting of 60% and 55%, re-
spectively (Sobolev et al., 2005, 2011). Peridotite was assumed to
melt dynamically according to the parameterization of Hirschmann
(2000), with critical and residual porosities in the peridotite part of
the mantle ϕC = ϕR = 0.4%. Relative to dry peridotite, the solidus
of hydrous peridotite was reduced as a function of the water con-
tent in the liquid cL [i.e., by 43cL K/wt% (Katz et al., 2003)] using

cL = c

DH2O
= c0

FHP + DH2O(1 − FHP)
(1)

for FHP < ϕC , and

cL = c

DH2O
= c0

(1 − FHP−ϕC
1−ϕC

)

1
ϕC(1−DH2O)+DH2O

−1

ϕC + DH2O(1 − ϕC )
(2)

for FHP � ϕC , where c0 is the starting water content in hydrous
peridotite, c is the water content in hydrous peridotite, FHP is the
melt depletion of hydrous peridotite, and DH2O is the bulk parti-
tioning coefficient of water (Zou, 1998). The values of the above
parameters are given in Table 1.

2.3. Buoyancy parameterization

Melt retention, temperature, the abundance of eclogite, and de-
pletion in peridotite were assumed to control the density of the
mantle:

ρ = ρ0 − α(T − T0) + (ρM − ρ0)ϕ

+ �ρF (FDPΦDP + FHPΦHP) + �ρECLΦECL (3)

where

ϕ = ϕPYXΦPYX + ϕDPΦDP + ϕHPΦHP (4)
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Fig. 3. Summary of model results for case A. (A) Perspective view from below of mantle potential temperature (colors) with the 1550 and 1620 ◦C isosurfaces shown in
translucent white and solid white, respectively. Grey and black isosurfaces denote sites of minor and major melting, respectively. For an animated version, see movie S1.
((B) and (C)) Vertical cross-sections through the model perpendicular to and parallel to plate motion, respectively. The pink dashed lines denote the intersection of the two
cross-sections shown in (B) and (C); the pink dotted line marks the location of the cross-section shown in Fig. 4C. Small arrows show mantle flow velocities; shading reflects
the strength of compositional density anomalies. The inset to (C) provides density profiles of the relevant compositions (Aoki and Takahashi, 2004). At depths ∼300–410 km,
the excess density of eclogite peaks and hot material accumulates to form a deep eclogitic pool (DEP).
and subscripts PYX, ECL, HP, and DP refer to the pyroxenite, eclog-
ite, and hydrous and dry peridotite components, respectively. Re-
garding the other variables, T is temperature, T0 reference temper-
ature, ρ density, ρ0 reference density, α thermal expansivity, ΦXX

volume fraction of a component, ϕXX porosity in a component, ϕ
bulk porosity, FXX depletion of a component, ρM density of melt,
and �ρECL excess density of solid eclogite. Depletion in dry and
hydrous peridotite affects density, as heavy minerals and oxides
are preferentially consumed during melting (Schutt and Lesher,
2006), so �ρF is the density reduction from depletion. The ex-
cess density of solid eclogite �ρECL was fixed at 220 kg/m3 in the
depth range 300 to 410 km and 110 kg/m3 elsewhere (Aoki and
Takahashi, 2004).

2.4. Rheology parameterization

The effects of composition on rheology were also taken into ac-
count (in addition to those of temperature and depth). Retained
melt lubricates mantle rocks (Kohlstedt and Zimmerman, 1996),
but stiffening related to dehydration of hydrous peridotite (Hirth
and Kohlstedt, 1996) is thought to be dominant (Karato, 1986).
A Newtonian rheology with an activation energy that is consistent
with experimental constraints (Karato and Wu, 1993) has been ap-
plied:

η = ηm exp

(
E∗ + ρm gzV ∗

RT
− E∗

RTm

) [(c − cdry)
ξ

ξ−1 ]ΦHP

exp(ζϕ)
(5)

where η is viscosity, ηm reference viscosity, z depth, g gravitational
acceleration, ζ melt lubrication exponent, V ∗ activation volume,
E∗ activation energy, R ideal gas constant, and cdry the water con-
tent below which peridotite behaves as dry peridotite (values given
in Table 1). The depletion stiffening factor ξ was scaled such that
viscosity of a peridotite that is dehydrated from c = 100 ppm by
weight to c � cdry increases by a factor of 100 (Hirth and Kohlst-
edt, 1996). The reference viscosity ηm used translates into an ef-
fective asthenospheric viscosity (far from the hotspot) of ηeff ≈
1.8 × 1019 Pa s.
3. Thermochemical plume dynamics in the upper mantle

Our models were designed to simulate the Hawaiian plume,
and their predictions are in general agreement with the most ro-
bust geological and geophysical constraints (also see Supplemen-
tary material). The modeled plume is up to 300 K hotter than
the ambient mantle (cf. Herzberg et al., 2007), and its hottest
core carries a fine-scale mixture of 15% eclogite and 85% peri-
dotite. Eclogite is denser than ambient-mantle peridotite through-
out the upper mantle, thereby slowing down and widening the
thermochemical plume compared with an equally hot classical
thermal plume. The thermochemical plume sustains (i.e., in case A)
a volcanic flux of ∼175,000 km3/Myr (cf. van Ark and Lin, 2004;
Robinson and Eakins, 2006) and supports a hotspot swell of height
∼1 km and width ∼1200 km (cf. Wessel, 1993; Crosby and
McKenzie, 2009).

Model results show that the doubling of the density difference
between eclogite and peridotite in the depth range ∼300–410 km
has a major effect on the dynamics of the upwelling plume
(Fig. 3C; Aoki and Takahashi, 2004). Once the hot and initially
positively buoyant, eclogite-bearing plume core rises through the
olivine–wadsleyite phase transition at 410 km depth, it becomes
slightly negatively buoyant (Fig. 4). Accordingly, as material con-
tinues to rise through this phase transition from below, it accu-
mulates above 410 and spreads laterally in the mid upper mantle
to form a deep eclogitic pool (DEP; Figs. 3–4). The warm eclogite-
barren material that initially surrounded the eclogitic core in the
deep plume conduit rises and becomes deflected up and around
the DEP, wrapping it as a warm, buoyant sheath. This buoyant
sheath restricts extensive lateral spreading of the DEP and, to-
gether with the underlying buoyant plume, dynamically supports
the excess weight of the DEP.

The flux of plume material rising into the base of the DEP
becomes approximately balanced by outflow, with most such out-
flow through the roof of the DEP and only a small fraction leak-
ing out of its trailing edge (i.e., “downwind” in the ambient flow
driven by plate motion). When the material rising out of the
DEP crosses the 300-km-deep coesite–stishovite phase transition
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Fig. 4. Net buoyancy in cross-sections through the plume perpendicular to plate motion. The sum of thermal and compositional buoyancy is colored for cases A (A, C) and B
(B, D). Contours denote potential temperature (i.e., temperature with adiabatic heating removed) with the 1500 ◦C isotherm dashed. Locations of cross-sections (A) and (C)
are marked in Fig. 3C by dashed pink and dotted pink lines, respectively; locations of cross-sections (B) and (D) are marked in Fig. 5C by dotted pink and dashed pink lines,
respectively. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 5. Summary of model results for case B. For description, see Fig. 3 caption. For an animated version of three-dimensional representation in panel (A), see movie S2. The
pink dotted line marks the location of the cross-section shown in Fig. 4B. (For interpretation of the colors in this figure, the reader is referred to the web version of this
article.)
in eclogite, it regains a positive net buoyancy (Fig. 4). This positive
buoyancy creates a positive feedback, in which the material rises
more quickly and draws more material from below. At depths of
about 250–150 km, upwelling is reinforced further by melting of
eclogite and the assumed instantaneous reaction of eclogitic melts
with peridotite to form pyroxenite. Since the density of pyroxen-
ite is not expected to differ markedly from that of peridotite, this
process effectively removes the negative compositional buoyancy
intrinsic to the plume core (shading in Figs. 3B–C, 5B–C). Conse-
quently, the shallow upwelling behaves similar to that of a classical
thermal plume. It is narrower than the underlying DEP and ther-
mochemical plume conduit, and when it encounters the base of
the lithosphere, it deflects into a thin (<100 km) thermal pancake,
which supports the hotspot swell.

Near the deflection point, decompression melting is most vo-
luminous and expected to feed hotspot volcanism. In terms of
its flux and geographic age progression, the predicted volcanism
agrees well with the Hawaiian shield stage (Supplementary mate-
rial). The high isobaric melt productivity of mafic materials in the
simulations causes the pyroxenite-derived lavas to compose the
major volume fraction, XPX = 80–90%, of the magmas produced.
This prediction is high compared with recent estimates for Hawaii,
i.e., XPX = 30–60% (Sobolev et al., 2005). This discrepancy could be
indicative of lower eclogite contents in the most central Hawai-
ian plume core (e.g., �30 km from the axis), which melts most
extensively beneath the hotspot, than modeled. In such an alterna-
tive scenario, the dynamics and geometry of the DEP are expected
to be only marginally affected as long as the material surround-
ing the most central core (i.e., radial distances from ∼30 km to
90–100 km), which predominantly feeds inflation of the flanks of
the DEP, contains ∼15% eclogite. However, we note that the pre-
dicted XPX values are upper bounds: melt–melt and melt–solid
interactions, not simulated here, would tend to increase the ef-
fective melt productivity (and decrease the solidus temperature)
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Fig. 6. Map views of predicted geographical distribution of volcanism. Contribu-
tion of pyroxenite-derived lavas to volcanism XPX (colors) and volcanic flux (solid
contours 0.1, 1, and 10 km3 km−2 Myr−1 from outside to inside) in a snapshot of
(A) quasi steady-state case A and of (B) time-dependent case B. Minor volcanism
(shaded) can occur well away from the hotspot, consistent with secondary Hawaiian
volcanism. Predicted volcanic fluxes are upper bounds inasmuch as magmatic un-
derplating is ignored. XPX for predicted shield-stage volcanism (not shaded) is near
symmetric in case A (A) but strongly asymmetric about an axis parallel to plate
motion in case B (B). (For interpretation of the colors in this figure, the reader is
referred to the web version of this article.)

of peridotite relative to that of pyroxenite (Mallik and Dasgupta,
2012). Small adjustments in melt productivity and solidus temper-
ature would indeed substantially reduce XPX , as degrees of melting
of peridotite in our models are limited by latent heat consumption
during pyroxenite melting (cf. Katz and Rudge, 2011).

Additional decompression melting well away from the hotspot
occurs above the upwelling material around the periphery of the
DEP and as a result of small-scale convection within the shal-
low pancake (cf. Ballmer et al., 2011). The predicted small flux of
this melting and its widespread geographic distribution agrees well
with observed occurrences of rejuvenated-stage (Dixon et al., 2008)
and arch volcanism (Hanyu et al., 2005) (Figs. 1 versus 6). The pre-
dicted difference in origin for the rejuvenated-stage and arch vol-
canism (i.e., from the plume outskirts) versus shield-stage volcan-
ism (i.e., from the plume core) is consistent with geochemical evi-
dence that these two forms of volcanism have distinct source ma-
terials (Yang et al., 2003; Hanyu et al., 2005; Fekiacova et al., 2007;
Dixon et al., 2008).

Our models further predict asymmetries in upper-mantle ther-
mochemical structure. The rise of the hottest plume-core material
through the DEP is driven by an internal pressure gradient be-
tween the deep plume conduit feeding its base (high pressure) and
the shallow plume drawing material out of its roof (low pressure).
This pressure gradient overcomes the negative buoyancy intrinsic
to the DEP material (Fig. 4) and drives material upward but not
necessarily vertically, as the pressure field in the DEP is also in-
fluenced by ambient-mantle downwellings [from small-scale sub-
lithospheric convection (Ballmer et al., 2011)] that compete with
the rising plume outskirt material to shape the sides of the DEP.
The result is asymmetric convection in the DEP, a tilted plume con-
duit above, and a bilaterally asymmetric thermal structure in the
shallow pancake (Figs. 3B, 4, 5B, 7). These model predictions are
consistent with observations of asymmetries in mantle seismic ve-
locity (Wolfe et al., 2009, 2011; Laske et al., 2011) and seafloor
bathymetry that both indicate more buoyant asthenosphere south-
west than northeast of the island of Hawaii (Fig. 1).

The time-dependent behavior of our thermochemical plume
models is sensitive to the distribution of eclogitic material in the
deep plume stem. In case A, for which the radius of the eclogite-
bearing part of the plume stem is 90 km, upwelling is nearly
steady. In contrast, in case B, for which eclogitic material extends
outward to just a slightly larger radius of 100 km, upwelling is
strongly time-dependent (movies S1 versus S2). On its less hot
sides, the DEP in case B is denser and supported by a thinner
outer sheath of warm, eclogite-barren material (Fig. 4). The DEP
is less well confined and hence wider than in case A. Flow out
of the roof of such a less stable DEP (as governed by the posi-
tive feedback mechanisms related to the coesite–stishovite phase
transition) cannot be steadily sustained by plume ascent from be-
low. Any such outflow intermittently drains the hottest core of the
DEP, thereby reducing its average density. The resulting fluctua-
tions in average DEP density, in combination with ambient-mantle
convection (Fig. 5B), cause the DEP and shallow plume to pulse and
wobble. Consequently, the rise of material out of the DEP changes
in flux, eclogite content, and location relative to the lower mantle.

Such a temporal variability of plume behavior can account for
some of the large fluctuations in magmatic flux indicated by vari-
ations in crustal thickness along the Hawaiian chain (van Ark and
Lin, 2004). In case B, hotspot volcanic flux changes by 50–100%
on timescales of ∼10 Myr (Fig. 8; movies S2, S3). Fig. 8 shows
that the amplitudes of these variations are similar to those docu-
mented, with the predicted spacing between the major peaks (i.e.,
8.4–14.3 Myr) bracketed by those measured (i.e., 8.3–17.4 Myr)
(van Ark and Lin, 2004). We note that this is one example cal-
culation, and we have yet to explore the range of parameters that
control the pulsations. We further emphasize that the predicted
variations arise entirely out of the dynamics of thermochemical
convection in the upper mantle, not from any fluctuations below
410 km depth. Any thermochemical plume pulsations rising out
of the lower mantle are likely to operate on longer timescales
(�30–50 Myr, Lin and van Keken, 2005) and would be superim-
posed on those rising out of the DEP.

The predictions for case B also have important implications
for the geochemical distinction between the two subchains of the
youngest Hawaiian volcanoes, the so-called Loa and Kea trends
(Fig. 1) (Abouchami et al., 2005; Greene et al., 2010; Huang et al.,
2011; Weis et al., 2011). Variations in the form and position of the
upwelling plume above the DEP cause the drainage pattern of the
DEP to be episodically strongly asymmetric in case B; material pre-
dominantly rises out of the DEP from where it has accumulated,
and not necessarily from directly above the deep plume conduit
(Fig. 5B; movie S2). Such an asymmetric drainage ultimately affects
the thermal structure (Figs. 5, 7) and the distribution of pyroxenite
in the melting zone. The associated asymmetry predicted in the
geographical expression of pyroxenite-derived versus peridotite-
derived lavas XPX (Fig. 6) is consistent with geochemical evidence
for a stronger pyroxenite-source signature along the Loa side of
the Hawaiian chain than along the Kea side (Sobolev et al., 2005;
Greene et al., 2010; Herzberg, 2011). Bianco et al. (2011) further
demonstrate that such geographical variations in XPX would be
expressed as subparallel trends in 208Pb/204Pb versus 206Pb/204Pb,
which is a characteristic criterion used to distinguish Loa ver-
sus Kea compositions (Abouchami et al., 2005). Thus, the geo-
chemical difference between Loa and Kea lavas may be related
to an asymmetric rise of the hottest eclogite-bearing plume core
through the upper mantle rather than to a bilateral asymmetry
of the deep plume conduit with distinct materials on the two
sides (cf. Abouchami et al., 2005; Farnetani and Hofmann, 2009;
Huang et al., 2011; Weis et al., 2011).
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Fig. 7. Asymmetry of temperature within the upper-mantle pancake and volcanism. Contours denote volcanic flux (analogous to Fig. 6); from outside to inside, the solid
contours mark 0.1, 1, and 10 km3 km−2 Myr−1, and dashed contours fall in between on this logarithmic scale. Colors show mantle potential temperature (i.e., temperature
with adiabatic heating removed) in horizontal cross-sections at 135 km depth (with the 1350 and 1500 ◦C isotherms outlined in green and pink, respectively). (A) Case A
displays minor asymmetry in pancake temperature. (B) Case B, in contrast, is strongly asymmetric in pancake temperature and to a lesser extent in the distribution of
volcanism. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 8. Comparison of predicted (red: case A, and blue: case B) with estimated (grey, van Ark and Lin, 2004) volcanic fluxes for the Hawaiian hotspot. White numbers show
the spacing of the major volcanic peaks predicted by case B.
On a more detailed level, trends in major-element versus
isotope-ratio space have been interpreted as evidence for the pres-
ence of a second mafic component in the source, in addition to the
pyroxenitic and peridotitic components modeled (Jackson et al.,
2012). Such a more complex source composition is supported by
the distinct slopes of the different volcanoes’ trends in 208Pb/204Pb
versus 206Pb/204Pb (Weis et al., 2011). Whether the data require
the distribution of two independent mafic components to be bi-
laterally asymmetric even in the conduit of a thermochemical
plume that is rising with a complex, asymmetric form such as
our models predict remains to be tested. The answer is likely
to depend on the (as yet unknown) difference in their melting
behaviors. Understanding the origin of geographical variations in
lava composition is indeed essential to map out first-order com-
positional structures in the deep mantle (cf. Huang et al., 2011;
Weis et al., 2011).

4. Comparison with seismic models

Finally, we investigated how the double layering of a thermo-
chemical plume would affect the seismic velocity anomalies re-
solved by regional tomography. To do so, we predicted synthetic
shear-wave velocities from case A. In computing a first synthetic,
we focused on the effects of temperature on seismic velocity (Faul
and Jackson, 2005), because such dependence is better under-
stood than the effects of composition or melt. A second synthetic
(Fig. 9A) includes the effects of eclogite on seismic velocities [ac-
cording to Xu et al. (2008), cf. Table S1]. Seismic resolution tests
[as described by Wolfe et al. (2009), cf. Supplementary material]
were performed for these two synthetic structures to create images
that can be compared directly with shear-wave velocity models de-
termined from the inversion of actual seismic data (Fig. 2). For
benchmark purposes, we repeated the resolution test for a syn-
thetic structure derived from a classical thermal plume model.
(Ballmer et al., 2011) (Fig. 9B). We note that the two geodynamic
plume models (thermal and thermochemical) have different plume
radii but similar buoyancy fluxes to closely match the most robust
observations at Hawaii (e.g., swell dimensions and volcanic flux),
an important prerequisite for comparison with each other and with
seismic data.

Visual comparison of the resolution tests lends credibility to
our thermochemical plume models. The predicted double layering
of plume material is not expected to be resolved by the current
body-wave inversions; vertical smearing produces a single, broad
low-velocity body with a thickness that is comparable to that
imaged by regional tomography (Fig. 2), independent of whether
(Fig. 9C) or not (not shown) the effects of eclogite on seismic ve-
locities were considered [both these images are visually almost in-
distinguishable; hence, our interpretations do not critically depend
on the poorly constrained effects of eclogite on seismic velocities
(cf. Connolly and Kerrick, 2002)]. The single-layer, classical ther-
mal plume is instead predicted to be imaged as a much less pro-
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Fig. 9. Comparison of predicted seismic anomalies for two different plume models. Vertical cross-sections through three-dimensional models of synthetic seismic shear-wave
velocities for (A) a double-layered thermochemical plume model (i.e., case A of this study including the effects of eclogite on seismic velocities), and (B) a single-layered
thermal plume model without eclogite [i.e., the reference case of Ballmer et al. (2011)]. The location of the cross-section is denoted in Fig. 1 as a pink dashed line. Insets
(top) display predicted (red) and observed (black) station-averaged, travel-time residuals along the profile of the cross-sections. For comparison, the blue dashed line shows
predicted travel-time residuals for case A excluding the effects of eclogite on seismic velocities. Resolution tests of the synthetic models for (C) the thermochemical plume
model and (D) the thermal plume model can be directly compared with the shear-wave velocity model (Fig. 1) from Wolfe et al. (2009) derived from tomographic inversion
of observations from seafloor and land stations. For visibility, the color scales in (C) and (D) are saturated with localized minima at < −3.5%, and localized maxima at ∼2.5%.
(For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
nounced low-velocity body in the upper mantle, in terms of its
overall size, particularly its width at the characteristic depths of
the DEP, as well as the maximum velocity anomaly in the shal-
lowest 400 km (Fig. 9D). Also, in all predicted seismic models, the
low-velocity body is surrounded on three sides by a high-velocity
curtain made of downwelling material from the base of the litho-
sphere. This material is more apparent in Fig. 9D (thermal plume)
than in Fig. 9C (thermochemical plume) as an artifact of the loca-
tion of the cross-sections relative to the coolest (fastest) portion of
the downwellings.

That the seismic data can indeed better be matched by the
thermochemical plume model is also well illustrated by quanti-
tative comparison of station-averaged travel-time residuals (insets
in Figs. 9A–B). The observed and predicted residuals are directly
computed from the data and the synthetics, respectively, thereby
excluding any potential bias from the distribution of sources and
stations, or the inversion process. The travel-time residuals are
an integrative quantity of the thickness and velocity anomaly of
the seismic structure underlying each station. The total variation
of ∼2.52 s (peak to peak) in the observed residuals (Wolfe et
al., 2009) is better matched by the thermochemical plume model
(∼1.24 s and ∼1.40 s with and without the effects of eclogite on
seismic velocities, respectively) than by the thermal plume model
(∼0.81 s), once note is taken that the effects of melt and volatile
content are not included. These effects should add to the varia-
tion predicted in both cases, but more so for the thermochemical
plume model, because eclogitic melts can be stabilized up to much
higher porosities (10–15%) and over greater depth ranges than
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peridotitic melts (Yasuda et al., 1994; Yaxley and Green, 1998;
Spandler et al., 2008; Mallik and Dasgupta, 2012). Abundance of
deep eclogitic melts, stabilized at depths of 150–250 km, would in-
crease the travel-time residuals and expand the apparent thickness
of the predicted low-velocity body. Independent seismic evidence
for a widespread thermal anomaly much like that of the predicted
DEP has come from a recent receiver-function study that images a
broad depression of the 410 km discontinuity beneath the Hawai-
ian swell (Huckfeldt et al., 2013).

5. Discussion and conclusion

This study characterizes the dynamics of an eclogite-bearing
thermochemical plume, and by comparing model predictions to
observations, provides evidence for such a plume beneath the
Hawaiian hotspot. The rise of a thermochemical plume out of
a near-neutrally buoyant layer in the mid upper mantle (i.e.,
the DEP) can give a self-consistent explanation for the asym-
metric and time-dependent nature of the Hawaiian hotspot as
documented in seafloor topography across the swell (Fig. 1) and
crustal thickness variations along the chain (van Ark and Lin, 2004;
Vidal and Bonneville, 2004), respectively. As revealed by our reso-
lution tests, a single upper-mantle pancake layer from a classical
thermal plume occupies a volume that is too small to explain seis-
mic constraints, whereas thermochemical convection can stabilize
greater volumes of hot plume material in the upper mantle. Finally,
the asymmetric character of a double-layered plume offers alterna-
tive explanations for geographical variations in lava chemistry such
as the Loa and Kea trends.

Other studies of mantle tomography and convection on a global
scale have shown that hot and compositionally dense layers are
present in the lower mantle and can markedly affect Earth’s inte-
rior evolution (Nakagawa and Tackley, 2005; Labrosse et al., 2007;
Garnero and McNamara, 2008; Deschamps et al., 2011). Our work
reveals evidence for entrainment and transport of these dense ma-
terials by mantle plumes. Probably the most critical episode in
the successful ascent of a thermochemical plume from its deep,
lower-mantle source to the base of the lithosphere is its cross-
ing through the narrow depth range of about 300–410 km, where
the negative buoyancy of mafic materials peaks due to the effects
of phase transitions (Aoki and Takahashi, 2004). Less critical may
instead be the passage through the thick lower-mantle shell, in
which the negative buoyancy decreases with increasing depth, as
mafic materials are less compressible than ambient-mantle pyro-
lite (cf. Samuel and Bercovici, 2006). Thus, it may be the passage
through the upper mantle that limits the content of mafic ma-
terials that can appear in the source of hotspot volcanism. Like
Hawaii, other hotspots may be underlain by thermochemical up-
wellings, and identifying their geochemical and geophysical surface
expressions will improve our understanding of heat and chemical
transport through the mantle.
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