349 research outputs found

    Image-based Lagrangian Particle Tracking in bed-load experiments

    Get PDF
    Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two actioncameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol

    Bridge pier scour measurement by means of Bragg grating arrays

    Get PDF
    Abstract. This paper deals with a new method to measure scour level at bridge piers. The proposed technique is based on an array of Bragg grating temperature sensors, heated by an electrical circuit. The Bragg gratings in water sense a lower temperature than those buried in the river bed, because of the different heat scattering principles in the two situations. Furthermore the response of each sensor is slower if it is buried in the bed, with respect to the case it is in water. The paper presents laboratory tests, showing the method effectiveness and reliability, and it explains the advantages with respect to other more traditional methodologies to measure scour level

    Qualitative flood risk assessment for road and railway infrastructures: the experience of the MOVIDA project

    Get PDF
    The Po River District Authority promoted the MOVIDA project with the aim to define appropriate methodologies for flood risk assessment and being compliant with the European Floods Directive (Directive 2007/60/EC). A dedicated Open Source Geographic Information System (i.e. QGIS geoprocessing modules) has been developed for mapping the expected damages in all areas at significant risk in the Po District (Northern Italy), considering five categories of exposed elements (population, infrastructures, economic activities, environmental and cultural heritage, and na-tech sites). Focusing on road and railway infrastructures, the methodology proposed within the project adopts information coming from different data sources (Regional Geoportals, Open Street Map, etc.) and allows to qualitatively estimate the potential risk associated with a flood event. Different risk classes (High, Medium, Low and Null) are assigned in relation to roads category (i.e., Highways, Main, Secondary, Service, Other) or railways type (High-Speed train or not), thus considering both the relevance of the infrastructure itself (as well as its topographical characteristics: e.g. tunnel, bridge, etc.) and the magnitude of the expected event (i.e., hazard). The definition of the risk matrix led to the estimation of the lengths of the sections exposed to different risk levels, which is useful to support the definition of potential mitigation measures and support the competent bodies in the organization of the rescue.</p

    Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment

    Get PDF
    YesFor the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM-SWEs model. Fifteen experiments were conducted over a total period of 3059.7 hours experimental time (over 4.2 months). The comparison shows that the 2D SGUM-SWEs model gives good representation to the experimental results with the practical advantage

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht
    • …
    corecore