17 research outputs found

    PlA2 Polymorphism of Platelet Glycoprotein IIb/IIIa and C677T Polymorphism of Methylenetetrahydrofolate Reductase (MTHFR), but Not Factor V Leiden and Prothrombin G20210A Polymorphisms, Are Associated with More Severe Forms of Legg-Calvé-Perthes Disease

    Get PDF
    The possible association of common polymorphic variants related to thrombophilia (the rs6025(A) allele encoding the Leiden mutation, rs1799963(A), i.e., the G20210A mutation of the prothrombin F2 gene, the rs1801133(T) variant of the methylenetetrahydrofolate reductase (MTHFR) gene that encodes an enzyme involved in folate metabolism, and rs5918(C), i.e., the "A2" allele of the platelet-specific alloantigen system that increases platelet aggregation induced by agonists), with the risk of Legg-Calvé-Perthes disease (LCPD) and the degree of hip involvement (Catterall stages I to IV) was analyzed in a cohort study, including 41 children of ages 2 to 10.9 (mean 5.4, SD 2.2), on the basis of clinical and radiological criteria of LCPD. In 10 of the cases, hip involvement was bilateral; thus, a total of 51 hips were followed-up for a mean of 75.5 months. The distribution of genotypes among patients and 118 controls showed no significant differences, with a slightly increased risk for LCPD in rs6025(A) carriers (OR: 2.9, CI: 0.2-47.8). Regarding the severity of LCPD based on Catterall classification, the rs1801133(T) variant of the MTHFR gene and the rs5918(C) variant of the platelet glycoprotein IIb/IIIa were associated with more severe forms of Perthes disease (Catterall III-IV) (p < 0.05). The four children homozygous for mutated MTHFR had a severe form of the disease (Stage IV of Catterall) and a higher risk of non-favorable outcome (Stulberg IV-V).This research was funded by a grant from the Spanish government, 2002–2005, grant number FIS (00/0015) and University of Cantabria code 06.3842.64001 and The APC was funded by University of Cantabria-IDIVAL

    Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix

    Get PDF
    [EN] The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC analyses showed a fast removal of ENR by (solar photo)-Fenton treatments in all studied water matrices, whereas a 40% removal was observed after 120 min of photolysis. However, TOC measurements showed that only solar photo-Fenton was able to produce significant mineralization (80% after 120 min of treatment); differences between ENR removal and mineralization can be attributed to the release of important amounts of reaction by-products. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were employed to gain further insight into the nature of these by-products and their time-course profile, obtaining a 5-component model. EEM-PARAFAC results indicated that photolysis is not able to produce important changes in the fluoroquinolone structure, in sharp contrast with (solar photo)-Fenton, where decrease of the components associated with fluoroquinolone core was observed. Agar diffusion tests employing E. toll and S. aureus showed that the antibiotic activity decreased in parallel with the destruction of the fluoroquinolone core.This paper is part of a project that has received funding from the European Union's Horizon 2020 - Research and Innovation Framework Programme under the H2020 Marie Sklodowska-Curie Actions grant agreement No 765860. The paper reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.Sciscenko, I.; García-Ballesteros, S.; Sabater Marco, C.; Castillo López, M.; Escudero-Oñate, C.; Oller, I.; Arqués Sanz, A. (2020). Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix. Science of The Total Environment. 719:1-9. https://doi.org/10.1016/j.scitotenv.2020.137331S1971

    A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis

    Full text link
    [EN] A methodology combining experimental design methodology, liquid chromatography, excitation emission matrixes (EEM) and bioassays has been applied to study the performance of O3 and O3/UVA-vis in the treatment of a mixture of eight phenolic pollutants. An experimental design methodology based on Doehlert matrixes was employed to determine the effect of pH (between 3 and 12), ozone dosage (02¿1.0¿g/h) and initial concentration of the pollutants (1¿6¿mg/L each). The following conclusions were obtained: a) acidic pH and low O3 dosage resulted in an inefficient process, b) increasing pH and O3 amount produced an enhancement of the reaction, and c) interaction of basic pH and high amounts of ozone decreased the efficiency of the process. The combination of O3/UVA-vis was able to enhance ozonation in those experimental regions were this reagent was less efficient, namely low pH and low ozone dosages. The application of EEM-PARAFAC showed four components, corresponding to the parent pollutants and three different groups of reaction product and its evolution with time. Bioassys indicated important detoxification (from 100% to less than 30% after 1¿min of treatment with initial pollutant concentration of 6¿mg/L, pH¿=¿9 and ozone dosage of 0.8¿g/h) according to the studied methods (D. magna and P. subcapitata). Also estrogenic activity and dioxin-like behavior were significantly decreased.The authors thank the financial support of the European Union(PIRSES-GA-2010-269128, EnvironBOS) and Spanish Ministerio de Educación y Ciencia (CTQ2015-69832-C4-4-R). Sara García-Ballesteros thanks Spanish Ministerio de Economía y Competitividad for providing her fellowship (BES-2013-066201).García-Ballesteros, S.; Mora Carbonell, M.; Vicente Candela, R.; Vercher Pérez, RF.; Sabater Marco, C.; Castillo López, M.; Amat Payá, AM.... (2019). A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis. Chemosphere. 222:114-123. https://doi.org/10.1016/j.chemosphere.2019.01.015S11412322

    Humic like substances extracted from oil mill wastes in photo-Fenton processes: Characterization, performance and toxicity assesment

    Full text link
    [EN] Olive mill waste has been used as sourcing materials for the isolation of humic like substances (OMW-HLS) which have demonstrated its capacity to expand the range of applicability of photo-Fenton process to pH= 5. During the isolation process, membranes of three different pore sizes (300 kDa, 150 kDa and 50 kDa) were employed in order to obtain three batches of OMW-HLS. Four pollutants contained in 2013/39/EC were used as target substances: terbutryn (TBT), diclofenac (DCF), chlorfenvinphos (CVF) and pentachlorophenol (PCP). Results showed that OMW-HLS was able to enhance photo-Fenton at pH = 5, but differences were not significant, either among fractions or with commercial humic substances. Reactions were scaled-up and driven under real sunlight and pollutants removal was faster in the presence of OMW-HLS. Toxicity was monitored according to bioassays based on different organisms or cell lines. Detoxification was observed with and without OMW-HLS, although higher toxicity was detected in the presence of humic acids, most probably due to the surfactant effect, that allows a better contact between pollutant and organism.The authors thank the financial support of the European Union H2020 (2018-2022) (Ref. 776816) Proyect O, and Spanish Ministerio de Ciencia, Innovacion y Universidad (RTI 2018-097997-B-C31) . Paula Garcia Negueroles thanks Spanish Ministerio de Ciencia, Innovacion y Universidades for providing their fellowships BES-2016-0777962.García-Negueroles, P.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Sabater Marco, C.; Castillo López, M.; López Pérez, MF.; Vicente Candela, R.... (2021). Humic like substances extracted from oil mill wastes in photo-Fenton processes: Characterization, performance and toxicity assesment. Journal of Environmental Chemical Engineering. 9(6):1-8. https://doi.org/10.1016/j.jece.2021.106862189

    Traumatic brain injury and acute kidney injury - outcomes and associated risk factors

    Get PDF
    Our objective was to analyze the contribution of acute kidney injury (AKI) to the mortality of isolated TBI patients and its associated risk factors. Observational, prospective and multicenter registry (RETRAUCI) methods were used, from March 2015 to December 2019. Isolated TBI was defined as abbreviated injury scale (AIS) ≥ 3 head with no additional score ≥ 3. A comparison of groups was conducted using the Wilcoxon test, chi-square test or Fisher's exact test, as appropriate. A multiple logistic regression analysis was conducted to analyze associated risk factors in the development of AKI. For the result, overall, 2964 (30.2%) had AIS head ≥ 3 with no other area with AIS ≥ 3. The mean age was 54.7 (SD 19.5) years, 76% were men, and the ground-level falls was 49.1%. The mean ISS was 18.4 (SD 8). The in-hospital mortality was 22.2%. Up to 310 patients (10.6%) developed AKI, which was associated with increased mortality (39% vs. 17%, adjusted OR 2.2). Associated risk factors (odds ratio (OR) (95% confidence interval)) were age (OR 1.02 (1.01?1.02)), hemodynamic instability (OR 2.87 to OR 5.83 (1.79-13.1)), rhabdomyolysis (OR 2.94 (1.69-5.11)), trauma-associated coagulopathy (OR 1.67 (1.05-2.66)) and transfusion of packed red-blood-cell concentrates (OR 1.76 (1.12-2.76)). In conclusion, AKI occurred in 10.6% of isolated TBI patients and was associated with increased mortality
    corecore