532 research outputs found

    The Osmotic Coefficient of Rod-like Polyelectrolytes: Computer Simulation, Analytical Theory, and Experiment

    Full text link
    The osmotic coefficient of solutions of rod-like polyelectrolytes is considered by comparing current theoretical treatments and simulations to recent experimental data. The discussion is restricted to the case of monovalent counterions and dilute, salt-free solutions. The classical Poisson-Boltzmann solution of the cell model correctly predicts a strong decrease in the osmotic coefficient, but upon closer look systematically overestimates its value. The contribution of ion-ion-correlations are quantitatively studied by MD simulations and the recently proposed DHHC theory. However, our comparison with experimental data obtained on synthetic, stiff-chain polyelectrolytes shows that correlation effects can only partly explain the discrepancy. A quantitative understanding thus requires theoretical efforts beyond the restricted primitive model of electrolytes.Comment: 16 pages, 2 figure

    Interaction of Charged Patchy Protein Models with Like Charged Polyelectrolyte Brushes

    Get PDF
    We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one-, and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule we observe large binding affinities up to tens of the thermal energy, kT, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.Comment: 16 pages, 8 figures, 2 table

    Competitive adsorption of multiple proteins to nanoparticles: the Vroman effect revisited

    Get PDF
    Proteins adsorbed from the blood plasma change nanoparticles inter- actions with the surrounding biological environment. In general, the ad- sorption of multiple proteins has a non-monotonic time dependence, that is, proteins adsorbed at first may slowly be replaced by others. This “Vro- man effect” leads to a highly dynamic protein corona on nanoparticles that profoundly influences the immune response of the body. Thus, the temporal evolution of the corona must be taken into account when consid- ering applications of nanocarriers in, e.g., nanomedicine or drug delivery. Up to now, the Vroman effect is explained solely in terms of diffusion: Smaller proteins which diffuse faster are adsorbed first while larger ones, having a stronger interaction with the surface, are preferred at equilib- rium. Here we use dynamic density functional theory (DDFT) including steric and electrostatic interactions to provide a full model for the tem- poral evolution of the protein corona. In particular, we demonstrate that proper consideration of all interactions leads to Vroman-like adsorption signatures in widely different scenarios. Moreover, consideration of ener- getic terms predicts both competitive as well as co-operative adsorption. In this way, DDFT provides a reacher picture of the evolution of the dynamic protein coron

    Structure factor and thermodynamics of rigid dendrimers in solution

    Full text link
    The ''polymer reference interaction site model'' (PRISM) integral equation theory is used to determine the structure factor of rigid dendrimers in solution. The theory is quite successful in reproducing experimental structure factors for various dendrimer concentrations. In addition, the structure factor at vanishing scattering vector is calculated via the compressibility equation using scaled particle theory and fundamental measure theory. The results as predicted by both theories are systematically smaller than the experimental and PRISM data for platelike dendrimers.Comment: 7 pages, 5 figures, submitte

    Softening of the stiffness of bottlebrush polymers by mutual interaction

    Full text link
    We study bottlebrush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side-chains with ca. 60 monomer units. The SLS- and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a worm-like chain with a contour length of 380 nm and a persistence length of 17.5 nm. An analysis of the DLS data confirm these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottlebrush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration 40.59 g/l under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.Comment: 4 pages, 4 figure

    Residual Stresses in Glasses

    Get PDF
    The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate γ˙\dot\gamma is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of γ˙t\dot\gamma t, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differing static properties.Comment: submitted to Physical Revie

    Quantifying the Reversible Association of Thermosensitive Nanoparticles

    Get PDF
    Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles

    Charge matters : mutations in Omicron variant favor binding to cells

    Get PDF
    Evidence is strengthening to suggest that the novel SARS-CoV-2 mutant Omicron, with its more than 60 mutations, will spread and dominate worldwide. Although the mutations in the spike protein are known, the molecular basis for why the additional mutations in the spike protein that have not previously occurred account for Omicron's higher infection potential, is not understood. We propose, based on chemical rational and molecular dynamics simulations, that the elevated occurrence of positively charged amino acids in certain domains of the spike protein (Delta: +4; Omicron: +5 vs. wild type) increases binding to cellular polyanionic receptors, such as heparan sulfate due to multivalent charge-charge interactions. This observation is a starting point for targeted drug development
    • …
    corecore