219 research outputs found

    Frozen light in periodic stacks of anisotropic layers

    Full text link
    We consider a plane electromagnetic wave incident on a periodic stack of dielectric layers. One of the alternating layers has an anisotropic refractive index with an oblique orientation of the principal axis relative to the normal to the layers. It was shown recently (A. Figotin and I. Vitebskiy, Phys. Rev. E68, 036609 2003) that an obliquely incident light, upon entering such a periodic stack, can be converted into an abnormal axially frozen mode with drastically enhanced amplitude and zero normal component of the group velocity. The stack reflectivity at this point can be very low, implying nearly total conversion of the incident light into the frozen mode with huge energy density, compared to that of the incident light. Supposedly, the frozen mode regime requires strong birefringence in the anisotropic layers - by an order of magnitude stronger than that available in common anisotropic dielectric materials. In this paper we show how to overcome the above problem by exploiting higher frequency bands of the photonic spectrum. We prove that a robust frozen mode regime at optical wavelengths can be realized in stacks composed of common anisotropic materials, such as YVO₄, LiNb, CaCO₃, and the like.Comment: to be submitted to Phys. Rev.

    Feature issue introduction: specialty optical fibers

    Get PDF
    For groundbreaking achievements concerning the transmission of light in fibers for optical communication. With this citation, the Nobel Committee bestowed the 2009 Nobel Prize in Physics to Dr. Charles Kao and validated the global importance of optical fibers. That said, technological demands march on and the applications in which optical fibers are employed continue to expand. Further, both existing and emerging applications are requiring greater performance and functionality, beyond those associated with telecommunications, from the enabling optical fibers; and so it is timely to offer this special issue that compiles recent advances in specialty optical fibers

    Tunable coaxial resonators based on silicon optical fibers

    No full text
    Thermal tuning of a coaxial fiber resonator with a silica cladding surrounding an inner silicon core is investigated. By pumping the silicon with below bandgap light, it is possible to redshift the WGM resonances

    Hydrothermal Growth of Heterogeneous Single Crystals for Solid State Laser Applications

    Get PDF
    Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing regions that are based upon the same host material but differ from one another according to some material feature such that they can perform various functions related to lasing. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A host material can be doped in one region with a suitable active lasing ion and can be formed with another region that is undoped and can act as an endcap, a waveguide cladding layer, or a substrate to provide strength and/or contact to a heat sink. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity

    Fusion splicing of silicon optical fibres

    No full text
    The first splicing experiments between silicon optical fibres (SOFs) and conventional fibres are investigated. An optimized fusion splicing approach for a polycrystalline SOF is demonstrated and the material properties after splicing are characterized

    Spectral engineering of optical fiber preforms through active nanoparticle doping

    Get PDF
    Europium doped alkaline earth fluoride [Eu:AEF(2) (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, tau, of the Eu3+ emission that follows the cationic mass; tau(Ca) \u3c tau(Sr) \u3c tau(Ba) with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise standard materials, e.g., vapor-derived silica, in next generation optical fibers

    Spectral Engineering of Optical Fiber Preforms Through Active Nanoparticle Doping

    Get PDF
    Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, τ, of the Eu3+ emission that follows the cationic mass; τCa \u3c τSr \u3c τBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise “standard” materials, e.g., vapor-derived silica, in next generation optical fibers

    Glass and process development for the next generation of optical fibers: A review

    Get PDF
    Applications involving optical fibers have grown considerably in recent years with intense levels of research having been focused on the development of not only new generations of optical fiber materials and designs, but also on new processes for their preparation. In this paper, we review the latest developments in advanced materials for optical fibers ranging from silica, to semi-conductors, to particle-containing glasses, to chalcogenides and also in process-related innovations.John Ballato, Heike Ebendorff-Heidepriem, Jiangbo Zhao, Laeticia Petit and Johann Trole

    Designing nanoparticles during the drawing step

    Get PDF
    International audienceNanoparticles in the core of optical fibres are widely studied due to the opportunity they give to tailor spectroscopic properties. Such fibres are usually obtained by drawing at high temperature a preform containing nanoparticles. This study focuses on the effect of the fibre drawing on nanoparticles. We fabricated an MCVD optical preform by doping the porous layer with nanoparticles. The optical fibre was studied by a FIB/SEM tomography.Figure 1 is the volume reconstruction of the core of the optical fibre. The yellow phase represents nanoparticles inside the core of the optical fibre. This reconstruction shows evidences of break-up, elongation and coalescence of particles. These features will be discussed according to phenomena well known from the rheology of emulsions and polymers. It comes from a competition between viscous stresses of the flow and surface tension.Observation of these size-controlling phenomena occuring during fibre drawing offer new perspectives to tailor the size of nanoparticles and are therefore of great interest for light scattering issues
    • …
    corecore