499 research outputs found

    Iron K-alpha Emission from X-ray Reflection: Predictions for Gamma-Ray Burst Models

    Full text link
    Recent observations of several gamma-ray burst (GRB) afterglows have shown evidence for a large amount of X-ray line emitting material, possibly arising from ionized iron. A significant detection of an X-ray spectral feature, such as that found in the Chandra observation of GRB 991216, may provide important constraints on the immediate environment of the burst and hence on progenitor models. The large Fe K-alpha equivalent widths inferred from the X-ray observations favor models in which the line is produced when the primary X-ray emission from the source strikes Thomson-thick material and Compton scatters into our line of sight. We present such reflection spectra here, computed in a fully self-consistent manner, and discuss the range of ionization parameters that may be relevant to different models of GRBs. We argue that the presence of a strong hydrogen-like K-alpha line is unlikely, because Fe-XXVI photons would be trapped resonantly and removed from the line core by Compton scattering. In contrast, a strong narrow emission line from He-like Fe-XXV is prominent in the model spectra. We briefly discuss how these constraints may affect the line energy determination in GRB 991216.Comment: 8 pages, 3 figures, Ap.J. Letters accepte

    Fe K\alpha emission from photoionized slabs: the impact of the iron abundance

    Full text link
    Iron K\alpha emission from photoionized and optically thick material is observed in a variety of astrophysical environments including X-ray binaries, active galactic nuclei, and possibly gamma-ray bursts. This paper presents calculations showing how the equivalent width (EW) of the Fe K line depends on the iron abundance of the illuminated gas and its ionization state -- two variables subject to significant cosmic scatter. Reflection spectra from a constant density slab which is illuminated with a power-law spectrum with photon-index \Gamma are computed using the code of Ross & Fabian. When the Fe K EW is measured from the reflection spectra alone, we find that it can reach values greater than 6 keV if the Fe abundance is about 10 times solar and the illuminated gas is neutral. EWs of about 1 keV are obtained when the gas is ionized. In contrast, when the EW is measured from the incident+reflected spectrum, the largest EWs are ~800 keV and are found when the gas is ionized. When \Gamma is increased, the Fe K line generally weakens, but significant emission can persist to larger ionization parameters. The iron abundance has its greatest impact on the EW when it is less than 5 times solar. When the abundance is further increased, the line strengthens only marginally. Therefore, we conclude that Fe K lines with EWs much greater than 800 eV are unlikely to be produced by gas with a supersolar Fe abundance. These results should be useful in interpreting Fe K emission whenever it arises from optically thick fluorescence.Comment: 5 pages, 5 figures, accepted by MNRAS Letter

    The response of the Fe K\alpha line to changes in the X-ray illumination of accretion discs

    Full text link
    X-ray reflection spectra from photoionized accretion discs in active galaxies are presented for a wide range of illumination conditions. The energy, equivalent width (EW) and flux of the Fe K line are shown to depend strongly on the ratio of illuminating flux to disc flux, Fx/Fdisc, the photon index of the irradiating power-law, \Gamma, and the incidence angle of the radiation, i. When Fx/Fdisc \leq 2 a neutral Fe K line is prominent for all but the largest values of \Gamma. At higher illuminating fluxes a He-like Fe K line at 6.7 keV dominates the line complex. With a high-energy cutoff of 100 keV, the thermal ionization instability seems to suppress the ionized Fe K line when \Gamma \leq 1.6. The Fe K line flux correlates with Fx/Fdisc, but the dependence weakens as iron becomes fully ionized. The EW is roughly constant when Fx/Fdisc is low and a neutral line dominates, but then declines as the line progresses through higher ionization stages. There is a strong positive correlation between the Fe K EW and \Gamma when the line energy is at 6.7 keV, and a slight negative one when it is at 6.4 keV. This is a potential observational diagnostic of the ionization state of the disc. Observations of the broad Fe K line which take into account any narrow component would be able to test these predictions. Ionized Fe K lines at 6.7 keV are predicted to be common in a simple magnetic flare geometry. A model which includes multiple ionization gradients on the disc is postulated to reconcile the results with observations.Comment: 11 pages, 10 figures. Fig. 10 on page 9 in colour. Accepted by MNRA

    X-ray Reflection By Photoionized Accretion Discs

    Get PDF
    We present the results of reflection calculations that treat the relevant physics with a minimum of assumptions. The temperature and ionization structure of the top five Thomson depths of an illuminated disc are calculated while also demanding that the atmosphere is in hydrostatic equilibrium. In agreement with Nayakshin, Kazanas & Kallman, we find that there is a rapid transition from hot to cold material in the illuminated layer. However, the transition is usually not sharp so that often we find a small but finite region in Thomson depth where there is a stable temperature zone at T \sim 2 x 10^{6} K due to photoelectric heating from recombining ions. As a result, the reflection spectra often exhibit strong features from partially-ionized material, including helium-like Fe K lines and edges. We find that due to the highly ionized features in the spectra these models have difficulty correctly parameterizing the new reflection spectra. There is evidence for a spurious RΓR-\Gamma correlation in the ASCA energy range, where RR is the reflection fraction for a power-law continuum of index Γ\Gamma, confirming the suggestion of Done & Nayakshin that at least part of the R-Gamma correlation reported by Zdziarski, Lubinski & Smith for Seyfert galaxies and X-ray binaries might be due to ionization effects. Although many of the reflection spectra show strong ionized features, these are not typically observed in most Seyfert and quasar X-ray spectra.Comment: 16 pages, accepted by MNRAS, Fig. 8 is in colour Figures and tables changed by a code update. Conclusions unchange

    X-ray Reflection from Inhomogeneous Accretion Disks: II. Emission Line Variability and Implications for Reverberation Mapping

    Full text link
    One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Ly\alpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest changes are found when the disk is moderately ionized. The O VIII EW varies by tens of eV, as well as exhibiting plenty of rapid, low-amplitude changes. This effect provides a natural explanation for some observed instances of short timescale Fe K variability which was uncorrelated with the continuum (e.g., Mrk 841). New predictions for Fe K reverberation mapping should be made which include the effects of this accretion disk driven line variability and a variable ionization state. Reflection spectra averaged over the evolution of the instability are well fit by constant density models in the 2-10 keV region.Comment: 20 pages, 3 figures. Accepted by Ap
    corecore