161 research outputs found

    Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty liver is known to be linked with insulin resistance, alcohol intake, diabetes and obesity. Biopsy and even scan-assessed fatty liver are not always feasible in clinical practice. This report evaluates the predictive ability of two recently published markers of fatty liver: the Fatty Liver Index (FLI) and the NAFLD fatty liver score (NAFLD-FLS), for 9-year incident diabetes, in the French general-population cohort: Data from an Epidemiological Study on the Insulin Resistance syndrome (D.E.S.I.R).</p> <p>Methods</p> <p>At baseline, there were 1861 men and 1950 women, non-diabetic, aged 30 to 65 years. Over the follow-up, 203 incident diabetes cases (140 men, 63 women) were identified by diabetes-treatment or fasting plasma glucose ≥ 7.0 mmol/l. The FLI includes: BMI, waist circumference, triglycerides and gamma glutamyl transferase, and the NAFLD-FLS: the metabolic syndrome, diabetes, insulin, alanine aminotransferase, and asparate aminotransferase. Logistic regression was used to determine the odds ratios for incident diabetes associated with categories of the fatty liver indices.</p> <p>Results</p> <p>In comparison to those with a FLI < 20, the age-adjusted odds ratio (95% confidence interval) for diabetes for a FLI ≥ 70 was 9.33 (5.05-17.25) for men and 36.72 (17.12-78.76) for women; these were attenuated to 3.43 (1.61-7.28) and 11.05 (4.09 29.81), after adjusting on baseline glucose, insulin, hypertension, alcohol intake, physical activity, smoking and family antecedents of diabetes; odds ratios increased to 4.71 (1.68-13.16) and 22.77 (6.78-76.44) in those without an excessive alcohol intake. The NAFLD-FLS also predicted incident diabetes, but with odds ratios much lower in women, similar in men.</p> <p>Conclusions</p> <p>These fatty liver indexes are simple clinical tools for evaluating the extent of liver fat and they are predictive of incident diabetes. Physicians should screen for diabetes in patients with fatty liver.</p

    Evaluating the association of common PBX1 variants with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>PBX1 </it>is a biological candidate gene for type 2 diabetes at the 1q21-q24 susceptibility locus. The aim of this study was to evaluate the association of common <it>PBX1 </it>variants with type 2 diabetes in French Caucasian subjects.</p> <p>Methods</p> <p>Employing a case-control design, we genotyped 39 SNPs spanning the <it>PBX1 </it>locus in 3,093 subjects to test for association with type 2 diabetes.</p> <p>Results</p> <p>Several <it>PBX1 </it>SNPs, including the G21S coding SNP rs2275558, were nominally associated with type 2 diabetes but the strongest result was obtained with the intron 2 SNP rs2792248 (P = 0.004, OR 1.20 [95% CI 1.06–1.37]). The SNPSpD multiple testing correction method gave a significance threshold of P = 0.002 for the 39 SNPs genotyped, indicating that the rs2792248 association did not survive multiple testing adjustment. SNP rs2792248 did not show evidence of association with the French 1q linkage signal (P = 0.31; weighted NPL score 2.16). None of the <it>PBX1 </it>SNPs nominally associated with type 2 diabetes were associated with a range of quantitative metabolic traits in the normoglycemic control subjects</p> <p>Conclusion</p> <p>The available data does not support a major influence of common <it>PBX1 </it>variants on type 2 diabetes susceptibility or quantitative metabolic traits. In order to make progress in identifying the elusive susceptibility variants in the 1q region it will be necessary to carry out further large association studies, meta-analyses of existing data from individual studies, and deep resequencing of the 1q region.</p

    Glucose-Dependent Regulation of NR2F2 Promoter and Influence of SNP-rs3743462 on Whole Body Insulin Sensitivity

    Get PDF
    Background: The Nuclear Receptor 2F2 (NR2F2/COUP-TFII) heterozygous knockout mice display low basal insulinemia and enhanced insulin sensitivity. We previously established that insulin represses NR2F2 gene expression in pancreatic β-cells. The cis-regulatory region of the NR2F2 promoter is unknown and its influence on metabolism in humans is poorly understood. The present study aimed to identify the regulatory regions that control NR2F2 gene transcription and to evaluate the effect of NR2F2 promoter variation on glucose homeostasis in humans. Methodology/Principal Findings: Regulation of the NR2F2 promoter was assessed using gene reporter assays, ChIP and gel shift experiments. The effects of variation at SNP rs3743462 in NR2F2 on quantitative metabolic traits were studied in two European prospective cohorts. We identified a minimal promoter region that down-regulates NR2F2 expression by attenuating HNF4α activation in response to high glucose concentrations. Subjects of the French DESIR population, who carried the rs3743462 T-to-C polymorphism, located in the distal glucose-responsive promoter, displayed lower basal insulin levels and lower HOMA-IR index. The C-allele at rs3743462 was associated with increased NR2F2 binding and decreased NR2F2 gene expression. Conclusions/Significance: The rs3743462 polymorphism affects glucose-responsive NR2F2 promoter regulation and thereby may influence whole-body insulin sensitivity, suggesting a role of NR2F2 in the control of glucose homeostasis in humans. © 2012 Boutant et al

    Evaluating the association of common APOA2 variants with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>APOA2 </it>is a positional and biological candidate gene for type 2 diabetes at the chromosome 1q21-q24 susceptibility locus. The aim of this study was to examine if HapMap phase II tag SNPs in <it>APOA2 </it>are associated with type 2 diabetes and quantitative traits in French Caucasian subjects.</p> <p>Methods</p> <p>We genotyped the three HapMap phase II tagging SNPs (rs6413453, rs5085 and rs5082) required to capture the common variation spanning the <it>APOA2 </it>locus in our type 2 diabetes case-control cohort comprising 3,093 French Caucasian subjects. The association between these variants and quantitative traits was also examined in the normoglycaemic adults of the control cohort. In addition, meta-analysis of publicly available whole genome association data was performed.</p> <p>Results</p> <p>None of the <it>APOA2 </it>tag SNPs were associated with type 2 diabetes in the French Caucasian case-control cohort (rs6413453, <it>P </it>= 0.619; rs5085, <it>P </it>= 0.245; rs5082, <it>P </it>= 0.591). However, rs5082 was marginally associated with total cholesterol levels (<it>P </it>= 0.026) and waist-to-hip ratio (<it>P </it>= 0.029). The meta-analysis of data from 12,387 subjects confirmed our finding that common variation at the <it>APOA2 </it>locus is not associated with type 2 diabetes.</p> <p>Conclusion</p> <p>The available data does not support a role for common variants in <it>APOA2 </it>on type 2 diabetes susceptibility or related quantitative traits in Northern Europeans.</p

    Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features

    Get PDF
    Sim1 haploinsufficiency in mice induces hyperphagic obesity and developmental abnormalities of the brain. In humans, abnormalities in chromosome 6q16, a region that includes SIM1, were reported in obese children with a Prader-Willi–like syndrome; however, SIM1 involvement in obesity has never been conclusively demonstrated. Here, SIM1 was sequenced in 44 children with Prader-Willi–like syndrome features, 198 children with severe early-onset obesity, 568 morbidly obese adults, and 383 controls. We identified 4 rare variants (p.I128T, p.Q152E, p.R581G, and p.T714A) in 4 children with Prader-Willi–like syndrome features (including severe obesity) and 4 other rare variants (p.T46R, p.E62K, p.H323Y, and p.D740H) in 7 morbidly obese adults. By assessing the carriers’ relatives, we found a significant contribution of SIM1 rare variants to intra-family risk for obesity. We then assessed functional effects of the 8 substitutions on SIM1 transcriptional activities in stable cell lines using luciferase gene reporter assays. Three mutations showed strong loss-of-function effects (p.T46R, p.H323Y, and p.T714A) and were associated with high intra-family risk for obesity, while the variants with mild or no effects on SIM1 activity were not associated with obesity within families. Our genetic and functional studies demonstrate a firm link between SIM1 loss of function and severe obesity associated with, or independent of, Prader-Willi–like features.Amélie Bonnefond, Anne Raimondo, Fanny Stutzmann, Maya Ghoussaini, Shwetha Ramachandrappa, David C. Bersten, Emmanuelle Durand, Vincent Vatin, Beverley Balkau, Olivier Lantieri, Violeta Raverdy, François Pattou, Wim Van Hul, Luc Van Gaal, Daniel J. Peet, Jacques Weill, Jennifer L. Miller, Fritz Horber, Anthony P. Goldstone, Daniel J. Driscoll, John B. Bruning, David Meyre, Murray L. Whitelaw and Philippe Frogue

    Analysis of KLF transcription factor family gene variants in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Krüppel-like factor (<it>KLF</it>) family consists of transcription factors that can activate or repress different genes implicated in processes such as differentiation, development, and cell cycle progression. Moreover, several of these proteins have been implicated in glucose homeostasis, making them candidate genes for involvement in type 2 diabetes (T2D).</p> <p>Methods</p> <p>Variants of nine <it>KLF </it>genes were genotyped in T2D cases and controls and analysed in a two-stage study. The first case-control set included 365 T2D patients with a strong family history of T2D and 363 normoglycemic individuals and the second set, 750 T2D patients and 741 normoglycemic individuals, all of French origin. The SNPs of six <it>KLF </it>genes were genotyped by Taqman<sup>® </sup>SNP Genotyping Assays. The other three <it>KLF </it>genes (KLF2, -15 and -16) were screened and the identified frequent variants of these genes were analysed in the case-control studies.</p> <p>Results</p> <p>Three of the 28 SNPs showed a trend to be associated with T2D in our first case-control set (P < 0.10). These SNPs, located in the <it>KLF2, KLF4 </it>and <it>KLF5 </it>gene were then analysed in our second replication set, but analysis of this set and the combined analysis of the three variants in all 2,219 individuals did not show an association with T2D in this French population. As the <it>KLF2</it>, -15 and -16 variants were representative for the genetic variability in these genes, we conclude they do not contribute to genetic susceptibility for T2D.</p> <p>Conclusion</p> <p>It is unlikely that variants in different members of the <it>KLF </it>gene family play a major role in T2D in the French population.</p

    The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering that a portion of the heterogeneity amongst previous replication studies may be due to a variable proportion of obese subjects in case-control designs, we assessed the association of genetic variants with type 2 diabetes (T2D) in large groups of obese and non-obese subjects.</p> <p>Methods</p> <p>We genotyped <it>RETN</it>, <it>KCNJ11</it>, <it>HNF4A</it>, <it>HNF1A</it>, <it>GCK</it>, <it>SLC30A8</it>, <it>ENPP1</it>, <it>ADIPOQ</it>, <it>PPARG</it>, and <it>TCF7L2 </it>polymorphisms in 1,283 normoglycemic (NG) and 1,581 T2D obese individuals as well as in 3,189 NG and 1,244 T2D non-obese subjects of European descent, allowing us to examine T2D risk over a wide range of BMI.</p> <p>Results</p> <p>Amongst non-obese individuals, we observed significant T2D associations with <it>HNF1A </it>I27L [odds ratio (OR) = 1.14, <it>P </it>= 0.04], <it>GCK </it>-30G>A (OR = 1.23, <it>P </it>= 0.01), <it>SLC30A8 </it>R325W (OR = 0.87, <it>P </it>= 0.04), and <it>TCF7L2 </it>rs7903146 (OR = 1.89, <it>P </it>= 4.5 × 10<sup>-23</sup>), and non-significant associations with <it>PPARG </it>Pro12Ala (OR = 0.85, <it>P </it>= 0.14), <it>ADIPOQ </it>-11,377C>G (OR = 1.00, <it>P </it>= 0.97) and <it>ENPP1 </it>K121Q (OR = 0.99, <it>P </it>= 0.94). In obese subjects, associations with T2D were detected with <it>PPARG </it>Pro12Ala (OR = 0.73, <it>P </it>= 0.004), <it>ADIPOQ </it>-11,377C>G (OR = 1.26, <it>P </it>= 0.02), <it>ENPP1 </it>K121Q (OR = 1.30, <it>P </it>= 0.003) and <it>TCF7L2 </it>rs7903146 (OR = 1.30, <it>P </it>= 1.1 × 10<sup>-4</sup>), and non-significant associations with <it>HNF1A </it>I27L (OR = 0.96, <it>P </it>= 0.53), <it>GCK </it>-30G>A (OR = 1.15, <it>P </it>= 0.12) and <it>SLC30A8 </it>R325W (OR = 0.95, <it>P </it>= 0.44). However, a genotypic heterogeneity was only found for <it>TCF7L2 </it>rs7903146 (<it>P </it>= 3.2 × 10<sup>-5</sup>) and <it>ENPP1 </it>K121Q (<it>P </it>= 0.02). No association with T2D was found for <it>KCNJ11</it>, <it>RETN</it>, and <it>HNF4A </it>polymorphisms in non-obese or in obese individuals.</p> <p>Conclusion</p> <p>Genetic variants modulating insulin action may have an increased effect on T2D susceptibility in the presence of obesity, whereas genetic variants acting on insulin secretion may have a greater impact on T2D susceptibility in non-obese individuals.</p
    • …
    corecore