2,383 research outputs found
Recommended from our members
Weather, climate, and hydrologic forecasting for the US Southwest: A survey
As part of a regional integrated assessment of climate vulnerability, a survey was conducted from June 1998 to May 2000 of weather, climate, and hydrologic forecasts with coverage of the US Southwest and an emphasis on the Colorado River Basin. The survey addresses the types of forecasts that were issued, the organizations that provided them, and techniques used in their generation. It reflects discussions with key personnel from organizations involved in producing or issuing forecasts, providing data for making forecasts, or serving as a link for communicating forecasts. During the survey period, users faced a complex and constantly changing mix of forecast products available from a variety of sources. The abundance of forecasts was not matched in the provision of corresponding interpretive materials, documentation about how the forecasts were generated, or reviews of past performance. Potential existed for confusing experimental and research products with others that had undergone a thorough review process, including official products issued by the National Weather Service. Contrasts between the state of meteorologic and hydrologic forecasting were notable, especially in the former's greater operational flexibility and more rapid incorporation of new observations and research products. Greater attention should be given to forecast content and communication, including visualization, expression of probabilistic forecasts and presentation of ancillary information. Regional climate models and use of climate forecasts in water supply forecasting offer rapid improvements in predictive capabilities for the Southwest. Forecasts and production details should be archived, and publicly available forecasts should be accompanied by performance evaluations that are relevant to users
Metal matrix composite structural panel construction
Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells
Thoriated nickel bonded by solid-state diffusion method
Solid-state diffusion bonding in an inert-gas atmosphere forms high-strength joints between butting or overlapping surfaces of thoriated nickel. This method eliminates inert-phase agglomeration
Fabrication and evaluation of brazed titanium-clad borsic/aluminum skin-stringer panels
A successful brazing process was developed and evaluated for fabricating full-scale titanium-clad Borsic/aluminum skin-stringer panels. A panel design was developed consisting of a hybrid composite skin reinforced with capped honeycomb-core stringers. Six panels were fabricated for inclusion in the program which included laboratory testing of panels at ambient temperatures and 533 K (500 F) and flight service evaluation on the NASA Mach 3 YF-12 airplane. All panels tested met or exceeded stringent design requirements and no deleterious effects on panel properties were detected followng flight service evaluation on the YF-12 airplane
Evaluation of Superplastic Forming and Weld-brazing for Fabrication of Titanium Compression Panels
The two titanium processing procedures, superplastic forming and weld brazing, are successfully combined to fabricate titanium skin stiffened structural panels. Stiffeners with complex shapes are superplastically formed using simple tooling. These stiffeners are formed to the desired configuration and required no additional sizing or shaping following removal from the mold. The weld brazing process by which the stiffeners are attached to the skins utilize spot welds to maintain alignment and no additional tooling is required for brazing. The superplastic formed/weld brazed panels having complex shaped stiffeners develop up to 60 percent higher buckling strengths than panels with conventional shaped stiffeners. The superplastic forming/weld brazing process is successfully scaled up to fabricate full size panels having multiple stiffeners. The superplastic forming/weld brazing process is also successfully refined to show its potential for fabricating multiple stiffener compression panels employing unique stiffener configurations for improved structural efficiency
Fabrication and evaluation of brazed titanium-clad Borsic/aluminum compression panels
Processes for brazing Borsic/aluminum composite materials that eliminate diffusion of braze alloy constituents into the aluminum matrix developed. One brazing study led to the development of a hybrid composite which combines high strength Borsic/aluminum and ductile titanium to form a material identified as titanium clad Borsic/aluminum. The titanium foil provides the Borsic/aluminum with a durable outer surface and serves as a diffusion barrier which alleviates fiber and matrix degradation during brazing. Titanium clad Borsic/aluminum skin panels were joined to titanium clad Borsic/aluminum stringers by brazing and were tested in end compression at room and elevated temperatures. The data include failure strength, buckling strength, and the effects of brazing on the material properties. Predicted buckling loads are compared with experimental data
Curved cap corrugated sheet
The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft
Joining and fabrication of metal-matrix composite materials
Manufacturing technology associated with developing fabrication processes to incorporate metal-matrix composites into flight hardware is studied. The joining of composite to itself and to titanium by innovative brazing, diffusion bonding, and adhesive bonding is examined. The effects of the fabrication processes on the material properties and their influence on the design of YF-12 wing panels are discussed
Brazed Borsic/aluminum structural panels
A fluxless brazing process has been developed that minimizes degradation of the mechanical properties of Borsic/aluminum composites. The process, which employs 718 aluminum alloy braze, is being used to fabricate full scale Borsic/aluminum-titanium honeycomb-core panels for Mach 3 flight testing on the YF-12 aircraft and ground testing in support of the Supersonic Cruise Aircraft Research (SCAR) Program. The manufacturing development and results of shear tests on full scale panels are presented
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented
- …