14,718 research outputs found

    Diffraction-limited CCD imaging with faint reference stars

    Get PDF
    By selecting short exposure images taken using a CCD with negligible readout noise we obtained essentially diffraction-limited 810 nm images of faint objects using nearby reference stars brighter than I=16 at a 2.56 m telescope. The FWHM of the isoplanatic patch for the technique is found to be 50 arcseconds, providing ~20% sky coverage around suitable reference stars.Comment: 4 page letter accepted for publication in Astronomy and Astrophysic

    Physical properties of 6dF dwarf galaxies

    Full text link
    Spectral synthesis is basically the decomposition of an observed spectrum in terms of the superposition of a base of simple stellar populations of various ages and metallicities, producing as output the star formation and chemical histories of a galaxy, its extinction and velocity dispersion. The STARLIGHT code provides one of the most powerful spectral synthesis tools presently available. We have applied this code to the entire Six-Degree-Field Survey (6dF) sample of nearby star-forming galaxies, selecting dwarf galaxy candidates with the goal of: (1) deriving the age and metallicity of their stellar populations and (2) creating a database with the physical properties of our sample galaxies together with the FITS files of pure emission line spectra (i.e. the observed spectra after subtraction of the best-fitting synthetic stellar spectrum). Our results yield a good qualitative and quantitative agreement with previous studies based on the Sloan Digital Sky Survey (SDSS). However, an advantage of 6dF spectra is that they are taken within a twice as large fiber aperture, much reducing aperture effects in studies of nearby dwarf galaxies.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, S. Recchi, G. Hensler (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Economic and demographic issues related to deployment of the Satellite Power System (SPS)

    Get PDF
    Growth in energy consumption stimulated interest in exploitation of renewable sources of electric energy. One technology that was proposed is the Satellite Power System (SPS). Before committing the U.S. to such a large program, the Department of Energy and the National Aeronautics and Space Administration are jointly participating in an SPS Concept Development and Evaluation Program. This white paper on industrial and population relocation is part of the FY 78 preliminary evaluation of related socio-economic issues. Results of four preliminary assessment activities are documented

    Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential

    Get PDF
    We calculate the self-consistent response of an axisymmetric galactic disk perturbed by an elliptical halo potential of harmonic number m = 2, and obtain the net disk ellipticity. Such a potential is commonly expected to arise due to a galactic tidal encounter and also during the galaxy formation process. The self-gravitational potential corresponding to the self-consistent, non-axisymmetric density response of the disk is obtained by inversion of Poisson equation for a thin disk. This response potential is shown to oppose the perturbation potential, because physically the disk self-gravity resists the imposed potential. This results in a reduction in the net ellipticity of the perturbation halo potential in the disk plane. The reduction factor denoting this decrease is independent of the strength of the perturbation potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of galaxy parameters. The reduction is negligible at all radii for higher harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the Astrophysical Journal, Vol. 542, Oct. 20, 200

    Superfluid and Mott Insulator phases of one-dimensional Bose-Fermi mixtures

    Get PDF
    We study the ground state phases of Bose-Fermi mixtures in one-dimensional optical lattices with quantum Monte Carlo simulations using the Canonical Worm algorithm. Depending on the filling of bosons and fermions, and the on-site intra- and inter-species interaction, different kinds of incompressible and superfluid phases appear. On the compressible side, correlations between bosons and fermions can lead to a distinctive behavior of the bosonic superfluid density and the fermionic stiffness, as well as of the equal-time Green functions, which allow one to identify regions where the two species exhibit anticorrelated flow. We present here complete phase diagrams for these systems at different fillings and as a function of the interaction parameters.Comment: 8 pages, 12 figure

    Paradoxical popups: Why are they hard to catch?

    Full text link
    Even professional baseball players occasionally find it difficult to gracefully approach seemingly routine pop-ups. This paper describes a set of towering pop-ups with trajectories that exhibit cusps and loops near the apex. For a normal fly ball, the horizontal velocity is continuously decreasing due to drag caused by air resistance. But for pop-ups, the Magnus force (the force due to the ball spinning in a moving airflow) is larger than the drag force. In these cases the horizontal velocity decreases in the beginning, like a normal fly ball, but after the apex, the Magnus force accelerates the horizontal motion. We refer to this class of pop-ups as paradoxical because they appear to misinform the typically robust optical control strategies used by fielders and lead to systematic vacillation in running paths, especially when a trajectory terminates near the fielder. In short, some of the dancing around when infielders pursue pop-ups can be well explained as a combination of bizarre trajectories and misguidance by the normally reliable optical control strategy, rather than apparent fielder error. Former major league infielders confirm that our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic

    The Nature of the H2-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 emission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51's ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab's synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised Figure 12 results unchange

    Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes

    Get PDF
    Background: The Cronobacter genus (Enterobacter sakazakii) has come to prominence due to its association with infant infections, and the ingestion of contaminated reconstituted infant formula. C. sakazakii and C. malonaticus are closely related, and are defined according their biotype. Due to the ubiquitous nature of the organism, and the high severity of infection for the immunocompromised, a multilocus sequence typing (MLST) scheme has been developed for the fast and reliable identification and discrimination of C. sakazakii and C. malonaticus strains. It was applied to 60 strains of C. sakazakii and 16 strains of C. malonaticus, including the index strains used to define the biotypes. The strains were from clinical and non-clinical sources between 1951 and 2008 in USA, Canada, Europe, New Zealand and the Far East. Results: This scheme uses 7 loci; atpD, fusA, glnS, gltB, gyrB, infB, and pps. There were 12 sequence types (ST) identified in C. sakazakii, and 3 in C. malonaticus. A third (22/60) of C. sakazakii strains were in ST4, which had almost equal numbers of clinical and infant formula isolates from 1951 to 2008. ST8 may represent a particularly virulent grouping of C. sakazakii as 7/8 strains were clinical in origin which had been isolated between 1977 - 2006, from four countries. C. malonaticus divided into three STs. The previous Cronobacter biotyping scheme did not clearly correspond with STs nor with species. Conclusion: In conclusion, MLST is a more robust means of identifying and discriminating between C. sakazakii and C. malonaticus than biotyping. The MLST database for these organisms is available online at http://pubmlst.org/cronobacter
    corecore