18 research outputs found

    Microvesicles and microRNAs : role in intercellular communication between CD4 T cells and endothelium in HIV-1 infection

    No full text
    Le virus de l’immunodéficience humaine de type 1 (VIH-1) induit une activation généralisée des réponses de l'hôte impliquant les lymphocytes T mais aussi les cellules du microenvironnement comme les cellules endothéliales. Les microvésicules (MV) sont des vésicules extracellulaires impliquées dans la communication intercellulaire décrites comme des vecteurs de microARNs (miARNs). Dans ce travail, nous avons émis l'hypothèse que l'infection par le VIH-1 induit l'expression de miARNs dans les lymphocytes T CD4 qui peuvent être vectorisés par les MV et transférés de manière paracrine aux CE. Ces MV joueraient un rôle important dans la pathogenèse de l’infection en contrôlant à distance l'homéostasie endothéliale. Nos résultats montrent que le miR-146-5p est uprégulé à la fois dans les lymphocytes T CD4 de patients infectés par le VIH-1, naïfs de traitement et dans les MV issues de ces lymphocytes. En utilisant un modèle de MV d’une lignée lymphocytaire T enrichie en miR-146-5p (miR-146b-MV), nous montrons que ces MV sont capables de : 1) de protéger leur contenu en miARNs de la dégradation par les RNases, 2) de transférer le miR-146b-5p mimic à des HUVEC et 3) réduire la réponse inflammatoire endothéliale in vitro et in vivo, dans les poumons de souris qui ont reçu une injection systémique de miR-146b-MV. Ce transfert est responsable d’une diminution de l’expression d’ICAM-1 et VCAM-1, à travers une down-régulation d’IRAK1 et de TRAF6. L’ensemble de ces résultats montre que le miR-146-5p transféré par des MV peut diminuer les réponses inflammatoires endothéliales et constituer ainsi un mécanisme de défense de l’hôte contre les altérations vasculaires induites par le VIH-1.Human immunodeficiency virus type 1 (HIV-1) promotes a generalized activation of host responses that involves CD4 T cells, but also cells of the micro-environnement that are not directly infected such as endothelial cells. Microvesicles (MV), implicated in cell-to-cell communication, have been recently described as vectors of microRNAs (miRNAs). We hypothesized that HIV-1 infection induce cellular miRNAs expression in CD4 T cells which may be vectorized by MV and transferred in a paracrine manner to endothelial cells to regulate vascular homeostasis. Using a miRNome quantitative RT-PCR analysis, we showed that HIV-1 infection leads to a dysregulation of several miRNAs and identified miR-146b-5p as upregulated in both CD4 T cells and CD4 T cells derived-MV from antiretroviral therapy (ART)-naive HIV-1 infected patients, compared to age- and sex-matched healthy subjects. Using a CEM T cell line transfected with miR-146b-5p mimic, we demonstrated that MV from CEM overexpressing miR-146b-5p mimic (miR-146b-MV): 1/ protect their miRNA cargo from RNase degradation, 2/ transfer miR-146b-5p mimic into HUVEC, and 3/ reduce endothelial inflammatory response in vitro and in vivo, in lungs from mice injected with miR-146b-MV. This paracrine control of endothelial inflammatory response mediated by MV involved a decreased expression of NF-κB responsive molecules ICAM-1 and VCAM-1, through down-regulation of IRAK1 and TRAF6. Collectively, these findings demonstrate that miR-146b-5p transferred by MV counteract IRAK1- and TRAF6-mediated endothelial inflammatory responses in HIV-1 infection and could be considered as a host defence mechanism against HIV-1-associated vascular alterations

    First case of B ALL with KMT2A-MAML2 rearrangement: a case report

    Get PDF
    Abstract Background A large number of chromosomal translocations of the human KMT2A gene, better known as the MLL gene, have so far been characterized. Genetic rearrangements involving KMT2A gene are frequently involved in lymphoid, myeloid and mixed lineage leukemia. One of its rare fusion partners, the mastermind like 2 (MAML2) gene has been reported in four cases of myeloid neoplasms after chemotherapy so far: two acute myeloid leukemias (AML) and two myelodysplasic syndrome (MDS), and two cases of secondary T-cell acute lymphoblastic leukemia (T-ALL). Case presentation Here we report the case of a KMT2A - MAML2 fusion discovered by Next-Generation Sequencing (NGS) analysis in front of an inv11 (q21q23) present in a 47-year-old female previously treated for a sarcoma in 2014, who had a B acute lymphoid leukemia (B ALL). Conclusion It is, to our knowledge, the first case of B acute lymphoblastic leukemia with this fusion gene. At the molecular level, two rearrangements were detected using RNA sequencing juxtaposing exon 7 to exon 2 and exon 9 to intron 1–2 of the KMT2A and MAML2 genes respectively, and one rearrangement using Sanger sequencing juxtaposing exon 8 and exon 2

    Interphase FISH for BCR-ABL1 rearrangement on neutrophils: A decisive tool to discriminate a lymphoid blast crisis of chronic myeloid leukemia from a de novo BCR-ABL1 positive acute lymphoblastic leukemia

    No full text
    Discrimination between lymphoid blast crisis of chronic myeloid leukemia (CML) and de novo BCR-ABL1 positive acute lymphoblastic leukemia (ALL) represents a diagnostic challenge because this distinction has a major incidence on the management of patients. Here, we report an uncommon pediatric case of ALL with cryptic ins(22;9)(q11;q34q34) and p190-type BCR-ABL1 transcript. We performed interphase fluorescence in situ hybridization (FISH) for BCR-ABL1 rearrangement on blood neutrophils, which was positive consistent with the diagnosis of lymphoid blast crisis of CML. This case illustrates the major interest of interphase FISH for BCR-ABL1 rearrangement on blood neutrophils as a decisive method to discriminate a lymphoid blast crisis of CML from a de novo BCR-ABL1 positive ALL

    Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs)

    No full text
    Methods: We used a patient-specific induced pluripotent stem cell (iPSC) line treated with the mutagenic agent N-ethyl-N-nitrosourea (ENU). Genomic instability was validated using Îł-H2AX and micronuclei assays and CGH array for genomic events. Results: An increased number of progenitors (x5-Fold), which proliferated in liquid cultures with a blast cell morphology, was observed in the mutagenized condition as compared to the unmutagenized one. CGH array performed for both conditions in two different time points reveals several cancer genes in the ENU-treated condition, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Transcriptome GEO-dataset GSE4170 allowed us to associate 125 of 249 of the aberrations that we detected in CML-iPSC with the CML progression genes already described during progression from chronic and AP to BC. Among these candidates, eleven of them have been described in CML and related to tyrosine kinase inhibitor resistance and genomic instability. Conclusions: These results demonstrated that we have generated, for the first time to our knowledge, an in vitro genetic instability model, reproducing genomic events described in patients with BC

    Extracellular vesicles from T cells overexpress miR-146b-5p in HIV-1 infection and repress endothelial activation

    No full text
    International audienceHuman immunodeficiency virus type 1 (HIV-1) infection promotes a generalized activation of host responses that involves not only CD4 T cells, but also cells of the microenvironment, which are not directly infected, such as endothelial cells. The mechanisms triggering HIV-1-associated vascular alterations remain poorly understood. Extracellular vesicles (EVs), implicated in cell-to-cell communication, have been recently described as carriers of microRNAs (miRNAs). Here, we show that miR-146b-5p is upregulated in both CD4 T cells, CD4 T cell-derived EVs and circulating EVs obtained from antiretroviral therapy-naive HIV-1-infected patients. We further demonstrate that EVs from T cell line overexpressing miR-146b-5p mimics (miR-146b-EVs): 1) protect their miRNA cargo from RNase degradation, 2) transfer miR-146b-5p mimics into endothelial cells and 3) reduce endothelial inflammatory responses in vitro and in vivo in the lungs of mice through the downregulation of nuclear factor-ÎşB-responsive molecules. These data advance our understanding on chronic inflammatory responses affecting endothelial homeostasis, in infectious and non-infectious diseases and pave the way for potential new anti-inflammatory strategies

    PHF6-altered T-ALL harbored epigenetic repressive switch at bivalent promoters and respond to 5-azacitidine and venetoclax

    No full text
    Purpose: To assess the impact of PHF6 alterations on clinical outcome andtherapeutical actionability in T cells acute lymphoblastic leukemia (T-ALL).Experimental Design: We described PHF6 alterations in an adult cohort of T-ALL fromthe French trial GRAALL 2003/2005 and retrospectively analyzed clinical outcomesbetween PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC andChIP-seq data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combine withvenetoclax, in PHF6ALT T-ALL.Results: We show that PHF6 alterations account for 47% of cases in our cohort anddemonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes.Integrative analysis of DNA methylation and histone marks shows that PHF6ALT arecharacterized by DNA hypermethylation and H3K27me3 loss at promotersphysiologically bivalent in thymocytes. Using patient-derived xenografts (PDX), weshow that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism withthe BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of refractory/relapsed(R/R) PHF6ALT patients who were successfully treated with this combination.Conclusions: Overall, our study supports the use of PHF6 alterations as a biomarkerof sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL
    corecore