496 research outputs found

    Nuclear Anapole Moments

    Get PDF
    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent Sβˆ’PS-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ``reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev

    Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars

    Get PDF
    Columbus crater in the Terra Sirenum region of the Martian southern highlands contains light-toned layered deposits with interbedded sulfate and phyllosilicate minerals, a rare occurrence on Mars. Here we investigate in detail the morphology, thermophysical properties, mineralogy, and stratigraphy of these deposits; explore their regional context; and interpret the crater's aqueous history. Hydrated mineral-bearing deposits occupy a discrete ring around the walls of Columbus crater and are also exposed beneath younger materials, possibly lava flows, on its floor. Widespread minerals identified in the crater include gypsum, polyhydrated and monohydrated Mg/Fe-sulfates, and kaolinite; localized deposits consistent with montmorillonite, Fe/Mg-phyllosilicates, jarosite, alunite, and crystalline ferric oxide or hydroxide are also detected. Thermal emission spectra suggest abundances of these minerals in the tens of percent range. Other craters in northwest Terra Sirenum also contain layered deposits and Al/Fe/Mg-phyllosilicates, but sulfates have so far been found only in Columbus and Cross craters. The region's intercrater plains contain scattered exposures of Al-phyllosilicates and one isolated mound with opaline silica, in addition to more common Fe/Mg-phyllosilicates with chlorides. A Late Noachian age is estimated for the aqueous deposits in Columbus, coinciding with a period of inferred groundwater upwelling and evaporation, which (according to model results reported here) could have formed evaporites in Columbus and other craters in Terra Sirenum. Hypotheses for the origin of these deposits include groundwater cementation of crater-filling sediments and/or direct precipitation from subaerial springs or in a deep (∼900 m) paleolake. Especially under the deep lake scenario, which we prefer, chemical gradients in Columbus crater may have created a habitable environment at this location on early Mars

    Perspectives on Continental Rifting Processes From Spatiotemporal Patterns of Faulting and Magmatism in the Rio Grande Rift, USA

    Full text link
    Analysis of spatiotemporal patterns of faulting and magmatism in the Rio Grande rift (RGR) in New Mexico and Colorado, USA, yields insights into continental rift processes, extension accommodation mechanisms, and rift evolution models. We combine new apatite (U‐Th‐Sm)/He and zircon (U‐Th)/He thermochronometric data with previously published thermochronometric data to assess the timing of fault initiation, magnitudes of fault exhumation, and growth and linkage patterns of rift faults. Thermal history modeling of these data reveals contemporaneous rift initiation at ca. 25 Ma in both the northern and southern RGR with continued fault initiation, growth, and linkage progressing from ca. 25 to ca. 15 Ma. The central RGR, however, shows no evidence of Cenozoic fault‐related exhumation as observed with thermochronometry and instead reveals extension accommodated through Late Cenozoic magmatic injection. Furthermore, faulting in the northern and southern RGR occurs along an approximately north‐south strike, whereas magmatism in the central RGR occurs along the northeast to southwest trending Jemez lineament. Differences in deformation orientation and rift accommodation along strike appear to be related to crustal and lithospheric properties, suggesting that rift structure and geometry are at least partly controlled by inherited lithospheric‐scale architecture. We propose an evolutionary model for the RGR that involves initiation of fault‐accommodated extension by oblique strain followed by block rotation of the Colorado Plateau, where extension in the RGR is accommodated by faulting (southern and northern RGR) and magmatism (central RGR). This study highlights different processes related to initiation, geometry, extension accommodation, and overall development of continental rifts.Plain Language SummaryWe identify patterns of faulting and volcanism in the Rio Grande rift (RGR) in the western United States to better understand how continental rifts evolve. Using methods for documenting rock cooling ages (thermochronology), we determined that rifting began around 25 million years ago (Ma) in both the northern and southern RGR. Rift faults continued to develop and grow for another 10 to 15 million years. The central RGR, however, shows that rift extension occurred through volcanic activity both as eruptions at the surface and as magma injection below the surface since ~15 Ma. Interestingly, RGR faulting in the north and south parts of the rift occurs on a north‐south line, while volcanism in the central RGR is along a northeast to southwest line. The differences in the location and orientation of faulting and volcanic activity may be related to the thickness of the lithosphere beneath different parts of the rift. Using these patterns of faulting and magmatism, we propose the RGR evolved through a combination of (1) oblique strainβ€”extension diagonal to the rift and (2) block rotationβ€”where the Colorado Plateau is the rotating block. This detailed study highlights different processes related to the accommodation of extension and the overall development of continental rifts.Key PointsInitiation of the Rio Grande rift appears to be synchronous ~25 Ma and does not support a northward propagation modelExtension is accommodated by faulting in the northern and southern Rio Grande rift and by magmatic injection in the central Rio Grande riftDifferent rift accommodation mechanisms may be controlled by preexisting weaknesses and lithospheric properties (i.e., thickness)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/1/tect21226.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/2/wrcr21226-sup-00001-2019TC005635-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/3/tect21226_am.pd

    Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod

    Get PDF
    Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Expression of an Epitope-Tagged Virulence Protein in Rickettsia parkeri Using Transposon Insertion

    Get PDF
    Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors

    Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?

    Get PDF
    Background: The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings: To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance: This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that anothe

    Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial.

    Get PDF
    BACKGROUND: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. METHODS: Serial blood, serum and peripheral blood mononuclear cellΒ (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. RESULTS: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later. Β NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and Ξ²7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. CONCLUSIONS: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection
    • …
    corecore