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Germline-encoded receptors recognizing common pathogen-
associated molecular patterns are a central element of the innate
immune system and play an important role in shaping the host
response to infection. Many of the innate immune molecules
central to these signaling pathways are evolutionarily con-
served. LysMD3 is a novel molecule containing a putative pep-
tidoglycan-binding domain that has orthologs in humans, mice,
zebrafish, flies, and worms. We found that the lysin motif
(LysM) of LysMD3 is likely related to a previously described
peptidoglycan-binding LysM found in bacteria. Mouse LysMD3
is a type II integral membrane protein that co-localizes with
GM130� structures, consistent with localization to the Golgi
apparatus. We describe here two lines of mLysMD3-deficient
mice for in vivo characterization of mLysMD3 function. We
found that mLysMD3-deficient mice were born at Mendelian
ratios and had no obvious pathological abnormalities. They also
exhibited no obvious immune response deficiencies in a number
of models of infection and inflammation. mLysMD3-deficient
mice exhibited no signs of intestinal dysbiosis by 16S analysis or

alterations in intestinal gene expression by RNA sequencing.
We conclude that mLysMD3 contains a LysM with cytoplasmic
orientation, but we were unable to define a physiological role for
the molecule in vivo.

The innate immune response to infection relies heavily on
signals transduced by germline-encoded receptors that re-
cognize common pathogen-associated molecular patterns
(PAMPs)4 such as bacterial and viral proteins, glycoproteins,
and microbe-specific nucleic acids (1). These pattern recogni-
tion receptors tend to recognize microbial products that are
absent in the host, thereby preventing self-reactivity, are often
evolutionarily conserved, and may be members of a protein
family that recognize similar but distinct microbial products.

Therefore, we were interested in characterizing the evolu-
tionarily-conserved molecule, LysMD3, which has homologs in
humans, mice, zebrafish, flies, and worms. LysMD3 is named
for its N-terminal lysin motif (LysM) and, in mice and humans,
is a member of a protein family that also includes LysMD1,
LysMD2, and LysMD4. Recent studies of bacterial and plant
LysMs suggest that LysMs bind the glycan backbone of pepti-
doglycan or the related molecule chitin (2–6). Although pepti-
doglycan is a ubiquitous bacterial component, relatively little is
known about its interactions with the mammalian immune sys-
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tem. The intracellular receptors NOD1 and NOD2 have been
shown to bind the peptidoglycan fragments Tri-DAP and
muramyl-dipeptide, respectively (7), but it is unknown whether
the mammalian immune system is capable of recognizing the
ubiquitous polymeric glycan backbone of peptidoglycan. Fur-
thermore, a recent study suggested that chitin oligomers may
modulate mammalian angiogenesis through interactions with a
yet unknown receptor (8). We hypothesized that the LysMD
family may represent a novel family of pattern recognition
receptors, potentially capable of recognizing important micro-
bial ligands such as peptidoglycan or chitin.

Results from this study revealed that the LysM of LysMD3
is evolutionarily conserved, with orthologs in human, mice,
zebrafish, flies, and worms. In mammalian cells, we found that
LysMD3 was a type II integral membrane protein that co-local-
izes with the Golgi marker GM130 with a predicted cytoplas-
mic location of the LysM. To explore the function of LysMD3 in
the immune response, we generated two lines of LysMD3-defi-
cient mice and evaluated the role of LysMD3 in a number of
infection and inflammation models. We found no evidence for
a role for LysMD3 during the mammalian immune response in
the models that we tested, nor did we find a role for LysMD3 in
the control of the intestinal microbiota or intestinal gene
expression. Additional studies will be required to determine a
functional role for this evolutionarily-conserved molecule.

Results

LysMD3 is a predicted transmembrane protein containing an
evolutionarily conserved LysM

Mouse LysMD3 (mLysMD3) is a 305-amino acid protein
with an annotated N-terminal LysM and C-terminal trans-
membrane domain (Fig. 1A). Phylogenetic analysis of the min-
imal LysM sequence from multiple model organisms (Fig. 1, B
and C) revealed that mLysMD1, mLysMD2, mLysMD3, and
mLysMD4 each clustered with like sequences from other
organisms, including Homo sapiens, Xenopus tropicalis, and
Danio rerio. Furthermore, groups containing LysMD3 and
LysMD4 sequences diverged from clusters containing LysMD1
and LysMD2 LysM sequences. Interestingly, the LysM from
Caenorhabditis elegans protein F43G9 clustered with LysMD3
and LysMD4 sequences and apart from LysMD1 and LysMD2.
Furthermore, whereas the exact relationship between the LysM
of mLysMD3 and Drosophila melanogaster CG17985 is some-
what less defined, it is apparent that the D. melanogaster
CG17985 clusters with sequences including mLysMD3/4 and
not with mLysMD1/2. The other murine LysM-containing pro-
teins Ncoa7 and Oxr1 cluster separately from CG17985 and the
mLysMD family members and are more similar to the D. mela-
nogaster protein Mtd (9).

Although there was sequence diversity within LysMs across
species, alignment of the deduced proteins demonstrated that
several residues were remarkably conserved between pro-
karyotes and higher order organisms (Fig. 1B). In particular, an
asparagine residue at position 31 is conserved in all the species
analyzed. In addition, amino acids 11–13, with only a few
exceptions, were conserved across LysMs from all species ana-
lyzed, including several bacterial proteins. A neighboring

sequence of amino acids 16 –19 had only conservative substitu-
tions across all species.

The mLysMD3 LysM sequence was submitted to the Phyre2
Protein Fold Recognition Server (10) for protein structure pre-
diction. The top hit from this analysis, in which 96% of the
sequence was modeled with a confidence of 99.6%, was struc-
ture 2djp, a structure of the LysM of human LYSMD1 (data not
shown). A model of the mLysMD3 LysM could also be gener-
ated based on the structure 2mkx, the LysM from Enterococcus
faecalis protein AtlA, in which 85% of the sequence could be
modeled with a confidence of 99.4% (Fig. 1D). Together, these
data suggest that the LysM of mLysMD3 and those of
mLysMD1, mLysMD2, and mLysMD4 are conserved across
multiple divergent species.

LysMD3 co-localizes with GM130� structures

We next sought to define the subcellular localization of
LysMD3. Immunofluorescence staining of endogenous human
LYSMD3 (hLYSMD3) in HeLa cells suggested that hLYSMD3
co-localizes with GM130� structures, consistent with localiza-
tion to the Golgi (Fig. 2A) (11). Importantly, this staining and
the co-localization are not observed in HeLa cell lines in which
hLYSMD3 expression has been eliminated through the use of
CRISPR/Cas9-targeted genome editing. These data are further
supported by similar staining patterns using a second commer-
cially-available anti-hLYSMD3 antibody as well as transfection
of HeLa cells with an mLysMD3-GFP expression construct
(Fig. 2C) and subsequent staining for GFP (Fig. S1, A and B).
Additionally, mouse embryonic fibroblast cells (MEFs) were
stained for mLysMD3 expression using an affinity-purified
polyclonal anti-mLysMD3 antibody raised against amino acids
1–205 of mLysMD3 (Fig. S1C). Although this antibody appears
to nonspecifically stain the nucleus, LysMD3-specific signals
were revealed by the absence of staining in MEFs deficient for
mLysMD3 due to the insertion of a gene-trap cassette down-
stream of mLysMD3 exon 1 (Fig. S2A). GM130 co-localization
was also observed for mLysMD3 in MEFs using this antibody
(Fig. S1C). Taken together, these data suggest that human and
mouse LysMD3 molecules are located on GM130� structures,
consistent with localization to the Golgi.

Pfam analysis of the mLysMD3 amino acid sequence identi-
fied a putative transmembrane domain between amino acids
217 and 237 (Fig. 1A), suggesting that mLysMD3 is a single pass
transmembrane molecule. To test this hypothesis, we first eval-
uated the cellular compartment with which mLysMD3 is asso-
ciated. Differential detergent fractionation followed by immu-
noblotting suggested that mLysMD3 is associated with the
membrane compartment of primary bone marrow macro-
phages (BMMo) and not the nucleus or cytoplasm (Fig. 2B).
These data are consistent with the hypothesis that mLysMD3 is
a transmembrane protein.

We next assessed mLysMD3 membrane topology in a prote-
ase protection assay using a recombinant mLysMD3 molecule
with N-terminal FLAG and C-terminal HA tags (FLAG-
LysMD3-HA, diagrammed in Fig. 2C). This construct was
expressed in HeLa cells; the plasma membrane was selectively
permeabilized using digitonin (12), and exposed epitopes were
subjected to proteinase K digestion. Immunoblot analysis of the
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N-terminal FLAG epitope indicated that the FLAG tag was
degraded upon permeabilization of the plasma membrane and
addition of increasing concentrations of proteinase K, as shown
by decreased detection of the FLAG-tagged full-length protein
(Fig. 2D). In contrast, with increasing concentration of protein-
ase K, the HA tag was detected on a molecular species that
shifted from a molecular mass of about 60 kDa to about 15 kDa,
indicating that the C-terminal HA tag was within an intracellu-
lar vesicle not permeabilized by digitonin and therefore pro-
tected from proteinase K digestion.

This conclusion is further supported by immunofluores-
cence analysis using GFP-tagged mLysMD3 molecules (dia-
grammed in Fig. 2C). Transfection of HeLa cells with GFP-
tagged molecules and anti-GFP staining demonstrated that an

mLysMD3 construct with a C-terminal GFP tag could be
immunostained at the cell surface without prior membrane
permeabilization (Fig. 2E). This anti-GFP signal is not observed
for an mLysMD3 construct with an N-terminal GFP tag with-
out prior membrane permeabilization.

Overall, these data suggest that mLysMD3 is a type II integral
membrane protein located in the Golgi, with the N-terminal
LysM located in the cytoplasm.

Generation of LysMD3-deficient mice

To evaluate the role of mLysMD3 during the immune
response in vivo, we generated a mouse line with gene trap
(GT)–mediated disruption of mLysMD3 using commercially
available ES cells. This 129P2Ola/Hsd background cell line con-

Figure 1. Phylogenetic analysis of LysMs. A, schematic of predicted domains of mouse LysMD3. TM, transmembrane. B, multiple sequence alignment of
LysMs from the indicated organisms. Positions with a single, fully conserved residue are marked with an asterisk. Positions with conservation of residues with
strongly similar properties (�0.5 in the Gonnet PAM 250 matrix) or weakly similar properties (�0.5 in the Gonnet PAM 250 matrix) are marked with a “:” or “.”,
respectively. Percent conservation of residues is indicated at the bottom. C, phylogenetic tree of LysMs based on the multiple sequence alignment in B. Where
known, common protein names are listed. For E. coli protein MltD, two LysMs in the protein were evaluated (MltD-1 and MltD-2). D, sequence alignment of
mLysMD3 and E. faecalis AltA. Secondary structural elements from E. faecalis AltA (PDB 2KMX) are indicated at the top. T, hydrogen-bonded turn. The figure was
prepared using Espript3.

Figure 2. LysMD3 is a type II integral membrane protein that co-localizes with GM130� structures. A, WT and hLYSMD3-deficient �LYSMD3 HeLa cells
were stained for LysMD3 using a polyclonal anti-hLYSMD3 antibody. Cells were co-stained for GM130, and phalloidin (blue) was used to visualize F-actin. B, WT
BMMo were subjected to differential detergent fraction and immunoblot analysis. Control molecules were ERK1/2 (cytoplasmic fraction), transferrin receptor
(TfR, membrane fraction), and histone H2AX (nuclear fraction). C, diagram of mLysMD3 constructs used in D and E. D, HeLa cells were transfected with a
construct expressing FLAG-LysMD3-HA, then permeabilized with Triton X-100, digested with increasing doses of proteinase K, as indicated, and subjected to
immunoblot analysis for FLAG, HA, and actin. E, HeLa cells were transfected with the indicated constructs. Cells were fixed and stained for GFP � prior
permeabilization with Triton X-100, as indicated. Following GFP staining, all samples were permeabilized, and phalloidin-594 was used to visualize F-actin.
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tained a �-gal/neomycin resistance GT inserted between exons
1 and 2 of the mLysMD3 gene, upstream of the protein-coding
region (Fig. S2A). The location of the GT cassette within
mLysMD3 intron 1 was confirmed by PCR and Sanger sequenc-
ing across the cassette and its boundaries (data not shown). The
mLysMD3 GT allele was backcrossed to a C57BL6/J (B6, WT)
background with the assistance of microsatellite-based speed
congenic analysis at each generation. mLysMD3GT/GT mice
were viable and fertile, and crosses of mLysMD3�/GT mice gen-
erate offspring with genotypes at the expected Mendelian fre-
quencies on both the 129P2Ola/Hsd and B6 backgrounds.

In knockout (KO) mice generated through gene-trap
mutagenesis, it is possible that splicing over the gene trap may
occur resulting in expression of the endogenous protein,
although often at hypomorphic levels (13). Additionally, it is
possible that backcrossing the mLysMD3 gene-trap allele from
one background to another could select for a linked gene with
differential immune responses between 129P2Ola/Hsd and B6.

We therefore also generated a KO mouse in which exon 2 of
mLysMD3, containing the coding region for the LysM, was tar-
geted using CRISPR/Cas9 genome editing in B6 embryos (Fig.
S2B). Sequencing of the edited mLysMD3 allele revealed a
deletion of �2 kb, corresponding to the genomic sequence
between the guide gRNA sites (Fig. S2C). As observed for the
mLysMD3 GT mouse line, mLysMD3EN/EN mice are viable and
fertile, and crosses of heterozygous parents yield offspring at
the expected Mendelian frequencies.

To evaluate expression of mLysMD3 in our two mouse lines,
we used a qRT-PCR assay with primers spanning the exon
2– exon 3 junction of mLysMD3. This exon– exon junction was
abolished in the LysMD3 EN mouse line and was downstream
of the gene-trap cassette in the LysMD3 GT mouse line. In this
assay, mLysMD3 transcripts are undetectable in littermates
from both lines of mLysMD3-deficient mice (Fig. 3A) and are
reduced in heterozygous mice, compared with WT.

Genomic alterations have the potential to affect neighboring
gene expression (14); therefore, we evaluated the expression of
selected mLysMD3 neighboring genes. We found that expres-

sion of Polr3g was unchanged in both LysMD3 GT and LysMD3
EN mice (Fig. S2D), whereas expression of Adgrv1 was
unchanged in LysMD3 EN mice and was marginally altered in
LysMD3 GT mice in a gene-dose– dependent manner (Fig.
S2D). Finally, given that LysMD3 is a member of a protein fam-
ily, we evaluated the expression of LysMD4 in the absence of
LysMD3. We found that LysMD4 expression was unaltered in
both lines of LysMD3-deficient mice in the tissues evaluated
(Fig. 3B).

These data suggest that alteration of mLysMD3 has minimal
effect on expression of surrounding gene or LysMD4 expres-
sion, and that we have established two lines of mLysMD3-defi-
cient mice, referred to as LysMD3 GT and LysMD3 EN
hereinafter.

Lack of a role for mLysMD3 in the response to Citrobacter
rodentium and Salmonella typhimurium infection

As our expression data suggested that mLysMD3 is
expressed in the intestine, we first evaluated the response of
mLysMD3-deficient mice to oral infection with the Gram-neg-
ative bacterium C. rodentium. In B6 background mice, oral
C. rodentium infection causes the formation of lesions similar
to those caused by the human enteric pathogen enteropatho-
genic Escherichia coli (15, 16). Over the course of infection with
C. rodentium, minimal morbidity was observed in mLysMD3
WT or mLysMD3 KO littermate mice (Fig. 4A). Furthermore,
no difference in C. rodentium fecal shedding was observed over
8 days of infection (Fig. 4B). Finally, no difference in colonic
inflammation was observed 8 days post-infection (DPI) in the
absence of mLysMD3 (Fig. 4, C and D).

We next evaluated the response of mLysMD3-deficient mice
to oral infection with the Gram-negative bacterium Salmonella
enterica serotype Typhimurium (S. Typhimurium). B6 mice are
highly susceptible to S. Typhimurium infection due to a muta-
tion in Nramp (17), but they can be used to model intestinal
inflammation during enteric salmonellosis (18). We found that
mLysMD3 deficiency did not affect intestinal inflammation
after S. Typhimurium infection in either the colon or cecum, as

Figure 3. LysMD3-deficient mice lack LysMD3 RNA expression. A and B, qRT-PCR analysis of LysMD3 (A) and LysMD4 (B) expression in the indicated tissues
from LysMD3 GT and LysMD3 EN mouse lines. All experimental mice were littermate-matched.
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evaluated by clinical scoring of histological sections at 2 DPI
(Fig. 4, E and F and data not shown).

Lack of a role for mLysMD3 in the response to intracellular
bacteria

Given the cytoplasmic orientation of the LysMD3 LysM, we
evaluated the role for LysMD3 in the sensing of intracellular
bacteria. We evaluated the response of mice to infection with
Listeria monocytogenes, an intracellular, cytoplasmic Gram-
positive bacterium that is a major human pathogen (19). Mice
were infected with L. monocytogenes and monitored for lethal-
ity. We observed no difference in lethality between mLysMD3
WT and mLysMD3 KO mice over the course of the experiment,
with approximately 50% of each genotype succumbing to infec-
tion (Fig. 5A). Furthermore, we found no role for mLysMD3 in
the ability of BMMo to activate T cells in response to L. mono-
cytogenes infection in vitro (Fig. S3A).

We next evaluated the ability of mLysMD3-deficient BMMo
to respond to infection by a Gram-negative intracellular and
cytoplasmic bacterium, Francisella novicida, a close relative of
the human pathogen Francisella tularensis, the causative agent
of tularemia (20). Two strains of F. novicida were used for these
experiments: U112, a WT strain of F. novicida, and isogenic
mutant �FPI, which is incapable of escaping the macrophage
phagosome to enter the cytoplasm (21). We observed no differ-
ence in the ability of either F. novicida strain to grow intracel-
lularly (Fig. 5B) or to stimulate cell death (Fig. S3B) or type I IFN
production (Fig. S3C) in the absence of mLysMD3. Similarly, no
difference in cell death or type I IFN production was seen at a
high multiplicity of infection (MOI) of 100 (data not shown).

We next evaluated the ability of mLysMD3-deficient mice to
control Mycobacterium tuberculosis infection in vivo (22–25).
M. tuberculosis is an intracellular pathogen, classically thought

to reside in an early endosomal compartment; however, recent
studies have suggested that it may also grow in the cytoplasm
(26). We found that there was no overall difference in M.
tuberculosis titers in the lungs of B6, mLysMD3EN/EN, or
mLysMD3GT/GT mice at 3 or 13 weeks post-infection (WPI)
(Fig. 5, C and D). Although there was a slight reduction in bac-
terial titers in the spleens of mLysMD3GT/GT mice at three WPI
compared with B6 controls (Fig. S3D), this reduction was not
observed in mLysMD3EN/EN mice and was not seen at 13 WPI
(Fig. S3E). Additionally, we did not observe differences in
immune cell recruitment to the lung, spleen, or mediastinal
lymph nodes of mLysMD3-deficient mice at either 3 or 13 WPI
(data not shown).

We next evaluated the ability of mLysMD3-deficient mice to
control Brucella abortus infection in vivo. Brucella species
cause chronic granulomatous infection in both domestic ani-
mals and humans (27, 28). Littermate-matched mice were
infected with B. abortus intraperitoneally (i.p.), and bacterial
titers were determined at 3 DPI. We observed no difference in
bacterial titers in the spleen or liver or serum IL6 levels in either
LysMD3-deficient mouse line (Fig. 5, E–G, and Fig. S3, F–H).

We next evaluated the ability of mLysMD3-deficient BMMo
to respond to infection with Legionella pneumophila, the caus-
ative agent of Legionnaire’s disease (29). BMMo were infected
with L. pneumophila strain LP02 or isogenic mutants �flaA or
�dotA. �flaA mutants are nonflagellated, nonmotile, and grow
to high titers in BMMo, although growth can be restricted by
IFN� priming of BMMo (30). Conversely, �dotA mutants lack
the type IV secretion apparatus that is strictly required for
intracellular growth (31). We found no difference in the ability
of these bacterial strains to grow intracellularly or to induce cell
death in the absence of mLysMD3 (Fig. 5H and Fig. S3I).

Figure 4. Lack of a role for LysMD3 in the control of C. rodentium and S. typhimurium infection. Littermate-matched male mice were infected with 1e9
CFU C. rodentium on day 0, and morbidity (A) and fecal shedding (B) were evaluated. At 8 DPI, colons were evaluated for inflammation (C and D). Each dot
represents the histology score for one mouse. E and F, mice were infected with 1e8 CFU S. Typhimurium. At 2 DPI, colons were harvested and evaluated for
inflammation. All experiments were performed in duplicate using littermate-matched male mice from the LysMD3 EN mouse line.
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We next evaluated a possible role for mLysMD3 in the patho-
genesis of urinary tract infections (UTIs) caused by the Gram-
negative bacterium uropathogenic E. coli (UPEC), which occu-
pies the luminal, intracellular cytoplasmic, and subcellular
compartments during infection (32). Mice were transurethrally
infected with the clinical UTI isolate, UTI89, and infection as
well as the inflammatory response were evaluated 24 h later.
We found no difference in urine bacterial titers or urine IL1�
production at 24 h post-infection (HPI) in the absence of
mLysMD3 (Fig. 5, I and J). Similarly, there was no difference in
serum IL1� production at 24 HPI (Fig. 5K). Histological evalu-
ation of bladders from UPEC-infected mice demonstrated no
role for mLysMD3 in the severity of inflammation at 24 HPI
(Fig. S3J). We also evaluated the ability of mLysMD3-deficient
BMMo to respond to UPEC infection in vitro. We found there
was no difference in IL1� production by mLysMD3-deficient
BMMo at either 6 or 24 HPI (Fig. S3K).

Finally, we evaluated the ability of mLysMD3-deficient MEFs
to respond to infection by clinically relevant intracellular bac-
teria species Chlamydia trachomatis and Shigella flexneri. We
saw no difference between LysMD3 WT and KO cell lines in

production of IFN� in response to C. trachomatis (Fig. 5L) or
S. flexneri (Fig. 5M). Similarly, no difference was seen in the
production of IL6 in response to infection (Fig. S3, L and M).

Lack of a role for mLysMD3 in models of inflammation

Datasets from the Immunological Genome Project (Immgen)
(33) suggest that mLysMD3 transcripts are expressed in cells of
the immune system, as well as in intestinal tissues that could
likely come into contact with pathogens. Therefore, we next
evaluated a number of additional models of inflammation and
infection.

Immgen datasets suggest that LysMD3 transcripts are highly
expressed in neutrophils (33). Therefore, we hypothesized that
mLysMD3 could regulate inflammation in the neutrophil-de-
pendent KRN model of serum-induced arthritis (34, 35). Mice
were intravenously injected with arthritogenic serum from
KxB/N mice on day 0 and monitored for disease progression. In
littermate-matched male mice, we found that there was no dif-
ference in arthritis induction, as assessed by weight loss (Fig.
6A), ankle swelling (Fig. 6B), and clinical scoring (data not
shown) up to 7 days post-serum transfer. Furthermore, there

Figure 5. Lack of a role for LysMD3 in the control of multiple bacterial infections. A, age-matched mice from the LysMD3 GT mouse line were infected with
5e5 CFU L. monocytogenes strain EGD i.p. and monitored for lethality. Data were pooled from three experiments using male mice and one experiment using
female mice. Nonlittermate B6 mice were used as controls. B, BMMo from the LysMD3 GT mouse line were infected with F. novicida strain U112 or isogenic
mutant FPI at an m.o.i. of 10, and intracellular growth was evaluated. C and D, mice were infected by aerosol method with M. tuberculosis strain Erdman, and
titers in the lungs were determined at 3 (C) and 13 (D) WPI. E–G, mice from the LysMD3 EN mouse line were infected with 1e6 CFU B. abortus i.p., and titers in
the spleen (E) and liver (F) and serum IL6 levels (G) were determined at 3 DPI. Data were combined from two experimental replicates. H, BMMo from the LysMD3
EN mouse line were infected with L. pneumophila strains Lp02, �dotA, or �flaA � IFN�, and intracellular growth was evaluated. Data were combined from two
experimental replicates. I–L, female littermate mice from the LysMD3 GT mouse line were inoculated transurethrally with 1e7 CFU of UPEC strain UTI89. At 24
HPI, urine was collected for CFU enumeration (I) and cytokine analysis (J), and serum was collected for cytokine analysis (K). L, MEFs from the LysMD3 GT mouse
line were infected with C. trachomonatis at an m.o.i. of 10, and levels of secreted IFNb were evaluated by ELISA. M, MEFs from the LysMD3 GT mouse line were
infected with S. flexneri at an m.o.i. of 1, and levels of secreted IFNb were evaluated by ELISA.
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were no observable histological differences in the affected joints
at that time point (data not shown). Separate experiments with
nonlittermate-matched mice suggested that resolution of
swelling after arthritis induction was similarly unaffected by
mLysMD3 deficiency (data not shown).

We next tested whether mLysMD3 played a role in the
inflammatory response to bacterial products. To address this,
we challenged mice with lipopolysaccharide (LPS) and moni-
tored them for mortality (Fig. 6C). We found there was no dif-
ference in LPS-induced death in the absence of mLysMD3.
Similarly, we found that peritoneal exudate cells (PECs) from
littermate-matched mLysMD3-deficient mice produced simi-
lar levels of pro-inflammatory cytokines after ex vivo stimula-
tion with LPS (Fig. 6D).

Lack of a role for mLysMD3 in response to viral infection

Given that mLysMD3 is highly expressed in the lung (Fig.
3A), we tested whether mLysMD3 played a role during respira-
tory viral infection. We first evaluated the ability of mLysMD3
to control influenza virus (IAV) infection in vivo. Mice were
infected with mouse-adapted influenza virus H1N1 strain PR8
intranasally (i.n.) and monitored for morbidity and mortality.
We found no difference in the susceptibility of mLysMD3-de-
ficient mice to infection with IAV PR8 over the course of the
experiment (Fig. 7A).

We also evaluated the role of mLysMD3 in the control of
herpesvirus reactivation from latency. Mice were latently
infected with the �-herpesvirus MHV68 and the ability of
MHV68 to reactivate from PECs was evaluated (36, 37). We

found no difference in viral reactivation from latently infected
LysMD3 WT or LysMD3-deficient PECs (Fig. 7, B and C).

Lack of a role for mLysMD3 in response to fungal infection

Given that LysM domains have been found capable of bind-
ing to chitin (5, 38), we evaluated the role of mLysMD3 in the
host response to fungal infection. Mice were infected with
Cryptococcus neoformans strain KN99� and monitored for
lethality (Fig. 8A). In one of three experiments, LysMD3 KO
mice were significantly more resistant to C. neoformans infec-
tion than their WT littermates. However, this finding was not
replicated in two subsequent experiments. We also found no
role for mLysMD3 in the response to Aspergillus fumigatus
infection in vivo. Mice were infected with A. fumigatus i.n. and
monitored for morbidity. We observed no difference in weight
loss over the course of the experiment, and we saw no difference
in cell recruitment to the lung at 4 DPI (Fig. 8, B and C). Evalu-
ation of lung tissue from A. fumigatus-infected mice revealed
no difference in lung inflammation or fungal hyphae growth in
the absence of mLysMD3 (data not shown).

Lack of a role for mLysMD3 in controlling intestinal bacterial
populations or intestinal gene expression

Interactions between host and pathogen are likely to be dis-
tinct from interactions between host and commensal organ-
isms. Given that publicly available datasets (39) and our own
analysis (Fig. 3A) suggest that LysMD3 was expressed in the
intestine, we assessed whether mLysMD3 regulated host inter-
actions with the commensal microbiota. To test this hypothe-
sis, we co-housed littermate WT and mLysMD3-deficient mice
for 2 weeks to homogenize the microbiota between mice and to
correct for variability due to differences in breeding cohorts.
Mice were then singly housed for 2 weeks on a regimen of broad
spectrum antibiotics in Kool Aid or Kool Aid alone. Fecal pel-
lets were collected for 16S analysis, and ileal tissue samples were
prepared for RNASeq. We found no difference between WT
and mLysMD3-deficient mice in bacterial richness or diversity
within treatment groups in either mLysMD3-deficient mouse
line (Fig. 9, A and B). We did observe a significant drop in
richness and diversity in the antibiotic-treated groups, as
expected (Fig. 9, A and B). We also applied principal compo-
nent analysis to these datasets and found that although there
was a clear difference between Kool Aid-treated and antibiotic-
treated mice, there was not a distinct separation of mice by
genotype (Fig. 9C). Finally, RNASeq analysis of ileum samples
from both the mLysMD3 GT and LysMD3 EN lines demon-
strated no differentially expressed genes between WT and
mLysMD3-deficient mice with or without antibiotic treatment
that reached significance in both mouse lines (Fig. 9D).

Lack of a role for mLysMD3 in the innate immune response to
C. rodentium infection

Finally, we tested whether mLysMD3 played a role in the
innate immune response to infection, which may have been
obscured by the presence of the adaptive immune system in
previous experiments. To address this possibility, we crossed
the LysMD3 EN mouse line to the Rag1 KO background (40).
Littermate-matched LysMD3 WT and KO mice on the Rag1

Figure 6. Lack of a role for LysMD3 in mouse models of inflammation.
Mice were i.v. injected with KBN serum at day 0 and monitored for weight loss
(A) and ankle swelling (B). Data were pooled from two experimental replicates
using littermate male mice from the LysMD3 EN mouse line. C, mice were
injected i.p. with 20 mg/kg LPS and monitored for death every 12 h. Data were
pooled from three experimental replicates using littermate-matched female
mice from the LysMD3 GT mouse line on a mixed B6/129P2Ola/Hsd back-
ground. D, PECs from the littermate-matched LysMD3 EN mouse line were
stimulated with 10 ng/ml LPS � IFN� pretreatment. At 6 h post-stimulation,
TNF� levels were measured in the supernatant fluids by ELISA. Data were
pooled from two separate experimental replicates.

Characterization of the novel molecule LysMD3

J. Biol. Chem. (2018) 293(16) 6022–6038 6029

 at W
ashington U

niversity on N
ovem

ber 17, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 



KO background were infected with C. rodentium and moni-
tored for lethality. We found no difference in lethality (Fig. 10A)
or stool titers (Fig. 10B) over the course of C. rodentium
infection.

Discussion

The annotated LysM domain of mLysMD3 is evolutionarily
related to similar domains in human, frog, and zebrafish with
orthologs in flies and worms. We found that mouse and human
LysMD3 proteins co-localize with GM130� structures and
that they are type II integral membrane proteins, with the LysM
domain with a cytoplasmic orientation. In extensive studies
of two independent lines of mLysMD3-deficient mice, we
observed no evidence for a physiological role for this molecule
in a range of pathogen infections, models of inflammation, or
interactions with commensal bacterial. One explanation for
these in vivo findings is that, while evolutionarily conserved,
mLysMD3 has no physiological role. Alternatively, we simply
failed to select the right model in which to detect a phenotype
for mLysMD3 deficiency, or there is redundancy that obscures
the function of this conserved molecule. The latter hypothesis
is supported by the lack of an observable developmental phe-
notype in our mLysMD3-deficient mice.

Significance of mLysMD3 localization and immune functions
of endoplasmic reticulum and Golgi proteins

We originally hypothesized that mLysMD3 was a candidate
pattern recognition receptor due to homology between the
LysMs in flies and plants. Furthermore, publicly available data-
bases and datasets (39, 41, 42), as well as our own data, suggest
that mLysMD3 is expressed in tissues where it could feasibly be

involved in the sensing of invading pathogens or interactions
with the commensal microbiota. Interestingly, however, we
found that mLysMD3 co-localizes with GM130� structures in
human and mouse cells, consistent with localization to the
Golgi (11), and furthermore, mLysMD3 is a type II integral
membrane protein with LysM in the cytoplasm. Although tra-
ditional paradigms for PAMP-sensing focus on localization of
pattern recognition receptors at the cell surface, it is now appre-
ciated that intracellular organelles such as mitochondria, the
endoplasmic reticulum, and the Golgi apparatus can serve
innate immune signaling platforms (43). For instance, in pri-
mary cells isolated from Drosophila infected with Wolbachia
pipientis bacteria, Wolbachia can be identified in a GM130�
cellular compartment or an immediately adjacent compart-
ment (44). In mammals, S. Typhimurium establishes the Sal-
monella-containing vacuole near the Golgi apparatus (45). Fur-
thermore, Salmonella enterica, B. abortus, C. trachomatis, and
L. pneumophila have all been shown to co-opt intracellular
trafficking and redirect Golgi-derived vesicles during infection
(46). However, we were unable to define a role for mLysMD3 in
models of these infections and multiple others. Furthermore,
we found that mLysMD3-deficient mice have no evidence of
dysbiosis or altered intestinal gene expression. It remains pos-
sible that mLysMD3 interacts specifically with a particular
microbial product or ligand that we did not evaluate in our
studies.

Evolutionary conservation

Despite the fact that mLysMD3 appears to be evolutionarily
conserved with proteins found in flies, zebrafish, and worms, it
is possible that its function is not conserved. Although Toll and

Figure 7. Lack of a role for mLysMD3 in the control of influenza and gHV68 viral infection. A, mice were anesthetized and infected IN with H1N1 strain PR8
and monitored for weight loss. Data were pooled from two experiments using littermate-matched female mice from the LysMD3 EN line. B and C, mice were
infected with MHV68 i.p. At 16 DPI, PECs (B) and splenocytes (C) were harvested, serially diluted, and plated on a monolayer of MEFs. At 3 weeks post-harvest,
MEF monolayers were scored for cytopathic effect, indicating the present of latent virions. Data were pooled from three experiments using nonlittermate B6
mice as a control and the LysMD3 GT mouse line.

Figure 8. Lack of a role for mLysMD3 in the response to C. neoformans and A. fumigatus infection. A, mice were infected i.n. with 5e4 CFU of C. neoformans
and monitored for lethality. Aggregated results from three independent experiments are shown. Mice were sacrificed if the body weight dropped below 80%
of initial starting weight. B and C, mice were infected i.n. with 1e7 A. fumigatus conidia and monitored for weight loss (B). At 4 DPI, lungs were lavaged, and BAL
cell counts were determined (C).
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Toll-like receptor family members are central to immune
responses in flies and mammals (47, 48), the evolutionarily-
conserved peptidoglycan recognition proteins (PGRP and
PGLYRP), while essential for the Drosophila immune response,
to date have been found to play a relatively minor role in mam-
malian immunity (49, 50). It is possible that LysMD3 is con-
served for reasons completely unrelated to a role in immunity,
despite its defining peptidoglycan-binding lysin motif, such as a
role during organismal development. Indeed, the Drosophila
molecule Toll plays an important role in dorsal-ventral polarity

during embryogenesis (51), with secondary function as an
important element of the immune response in adult flies (48,
52). Furthermore, LysMD family member expression in
zebrafish has been shown to be up-regulated during embryo-
genesis, with localization to the central nervous system, but
without alterations in expression in response to bacterial chal-
lenge (53).

mLysMD3 redundancy

LysMD3 is a member of a protein family, and LysMD4 is
predicted to also contain a LysM and a transmembrane domain.
It is possible that mLysMD4 may compensate for mLysMD3
deficiency in our mouse lines. However, we saw no evidence
of mLysMD4 transcript up-regulation in mLysMD3-deficient
mice, although it is possible that compensation may occur at
the level of protein regulation or in the context of physiological
levels of expression. It is also possible that the more distantly
related family members mLysMD1 and mLysMD2 could com-
pensate for mLysMD3 deficiency. However, obscuring of
mLysMD3 function by mLysMD1 or mLysMD2 redundancy
seems unlikely, given that the evolutionary distance between
these molecules is significant (Fig. 1C), and mLysMD1 and
mLysMD2 are not predicted to be membrane-bound proteins.

Figure 9. No microbiota or gene expression alterations in intestines of LysMD3-deficient mice. Littermate-matched WT and LysMD3-deficient (KO) mice
from both mouse lines were co-housed for 2 weeks, then subjected to 2 weeks of oral broad-spectrum antibiotics in Kool Aid, or Kool Aid alone. Post-treatment
fecal samples were subjected to 16S rRNA sequencing, and ileal RNA was subjected to RNA-Seq analysis. Based on 16S sequencing, bacterial species richness
(A) and � diversity (B) were evaluated. C, principal component analysis was applied to weighted UniFrac distances based on 16S rRNA sequences. D, average
expression values were calculated for each gene across replicates and plotted on a log10 scale by genotype. Genes with average expression values of �10 were
omitted. Genes with at least 2-fold change in expression with adjusted p values of �0.1 appear as black with the remainder in gray. There were no genes with
adjusted p values of �0.01.

Figure 10. Lack of a role for LysMD3 in the innate immune response to
C. rodentium infection. The LysMD3 EN mouse line was crossed onto the
Rag1 KO background. Littermate mice were infected with 1e9 CFU C. roden-
tium i.g. Lethality (A) and C. rodentium fecal shedding (B) were monitored.
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Mice deficient for multiple family members will be required to
evaluate a role for the LysMD protein family in mammalian
biology.

Materials and methods

Mice

The embryonic stem cell line Lysmd3Gt(E201G10)Wrst
(clone E201G10, 129P2Ola/Hsd background) was purchased
from the German Gene Trap Consortium. A single male chi-
meric founder was bred to B6 mice and backcrossed to �99%
B6J background with high-density (�10 centimorgans) micro-
satellite–marker-based speed congenic analysis at each gener-
ation with the assistance of the Speed Congenics Facility of the
Rheumatic Diseases Core Center at Washington University
School of Medicine. LysMD3 gene trap mutant mice were
genotyped using primers listed in Table 1, with GT mutant
alleles identified by primers A � C and WT alleles identified
by primers B � C. To generate CRISPR/Cas9-modified
mLysMD3-deficient mice, B6 embryos were microinjected
with mLysMD3 EN gRNA 1 and 2 (Table 1) and Cas9 mRNA
and transferred to pseudopregnant recipient female mice, as
described previously (54). Mice were screened for loss of exon 2
by Southern blotting, and targeted alleles were verified by
Sanger sequencing. A single male founder was crossed to a B6
female, and F1 pups were intercrossed to generate subsequent
breeding pairs and experimental animals. Mice were genotyped
using the primers listed in Table 1, with WT alleles identified by
primers A � B and EN mutant alleles identified by primers A �
C. All mice were bred and housed in an enhanced barrier-spe-
cific pathogen-free facility at Washington University in St.
Louis. All experiments were performed using age- and sex-
matched mice between 8 and 12 weeks of age generated by
intercrossing heterozygous mice (littermate mice), unless oth-
erwise noted. B. abortus experiments were performed at the
University of California Davis using age- and sex-matched lit-
termate mice between 7 and 17 weeks of age. Experiments con-
ducted at Washington University were approved by the Insti-
tutional Animal Care and Use Committee of Washington
University. B. abortus experiments conducted at the University
of California Davis were approved by the University of Califor-
nia Davis Institutional Animal Care and Use Committee.

Cell culture

MEFs were established from embryos derived from progeny
of an LysMD3 GT heterozygous mouse cross, genotyped as

above, and used before passage six. Unless otherwise stated,
MEFs derived from WT littermates were used as controls.
MEFs were grown in DMEM supplemented with 10% (v/v) FBS
and 1% penicillin/streptomycin. All HeLa cell lines were main-
tained in DMEM with 10% FBS. hLYSMD3 HeLa KO cells
(�LYSMD3) were generated using CRISPR/Cas9 genome edit-
ing at the Genome Engineering and iPSC Center at Washington
University School of Medicine (St. Louis, MO), as described
previously (55). Briefly, hLYSMD3 exon 2 was targeted using
hLysMD3 gRNA (Table 1), and single cell clones were
sequenced to confirm the complete absence of WT alleles and
disruption of the ORF.

Plasmids

To generate an N-terminal FLAG and C-terminal HA
expression vector, the Gateway cloning vector pTAG-attR-C1
(56), containing three N-terminal FLAG/CBP tags, was modi-
fied to encode three in-frame HA tags downstream of the Gate-
way cloning site. To generate an insert tagged with an N-termi-
nal EGFP, the FLAG/CBP motif in pTAG-attR-C1 was replaced
with EGFP. The cDNA IMAGE clone 3156298 containing
mLysMD3 was purchased from ATCC. The mLysMD3 pro-
tein-coding region was PCR-amplified and cloned into the
Gateway destination vectors described above. mLysMD3 was
also cloned into pEGFP-N1 (Clontech) using Gibson assembly
master mix (New England Biolabs). All expression plasmids
were sequence-verified.

Antibodies

Rabbit polyclonal anti-LysMD3 antibody was raised
against amino acids 1–205 of mouse LysMD3 (Cocalico).
mLysMD3(1–205) was conjugated to AffiGel15 (Bio-Rad) and
used to affinity-purify the resulting immune serum. Commer-
cially available antibodies were as follows: anti-�-actin (Sigma
A5316); anti-ERK1/2 (Cell Signaling 4695); anti-FLAG M2
(Sigma F1804); anti-GFP (Abcam ab6556); anti-GM130
(Pharmingen 610822); anti-H2AX (Millipore 07-627); anti-HA
(Sigma H9658); anti-hLysMD3 (Sigma HPA018024 and Pro-
teintech 24313-1-AP); and anti-transferrin receptor (Life Tech-
nologies, Inc., 13-6800). Secondary antibodies were as follows:
donkey anti-rabbit AF488 (Invitrogen A21206); goat anti-
mouse AF555 (Invitrogen A21425); goat anti-mouse AF633
(Invitrogen A21052); donkey anti-rabbit AF647 (Invitrogen
A-31573); goat anti-mouse HRP (Jackson ImmunoResearch
115-035-146); and goat anti-rabbit HRP (Jackson Immuno-
Research 111-035-003).

Phylogenetic analysis

Phylogenetic analysis was performed using the maximum
likelihood method in the MEGA6 package (57) with 500 boot-
strap replicates. The tree with the highest log likelihood is
shown. Phylogenetic trees were visualized using TreeView
(58). Sequences used for the phylogenetic analysis were as
follows: Caenorhabditis briggsae CBG12503, XP_002640031;
C. elegans F43G9, NP_001122475; D. melanogaster CG12207,
NP_650352; D. melanogaster CG15471, NP_572187; D.
melanogaster CG17985, NP_610305; D. melanogaster Mtd,
NP_652017; D. rerio LysMD1, NP_001070218; D. rerio

Table 1
Primers and gRNA

Target Primer sequence

mLysMD3 GT genotyping A GAGCCCCCAAATGAAAGAC
mLysMD3 GT genotyping B GTCTAGACCGGGTGGATGAA
mLysMD3 GT genotyping C TCTTCGCGCATCTGTCTCTA
mLysMD3 EN genotyping A TACAACAGGGTCTCAACCACG
mLysMD3 EN genotyping B GCTGGCAGCAAGAACCTTTG
mLysMD3 EN genotyping C AGGTCACCAGTAAAGGAATTTCA
Mouse actin qPCR F GCTCCTTCGTTGCCGGTCCA
Mouse actin qPCR R TTGCACATGCCGGAGCCGTT
Mouse actin qPCR probe CACCAGTTCGCCATGGATGACGA
mLysMD3 EN gRNA 1 GCCAGAGACACCCCGATACCTGG
mLysMD3 EN gRNA 2 GCTTTGTAACCTGCCCGATAGGG
hLysMD3 gRNA TGACCACTTGACTGAACTCCNGG
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LysMD2, NP_001003507; D. rerio LysMD3, NP_001002104;
D. rerio LysMD4, NP_957144; Drosophila simulans GD10233,
XP_002080462; E. coli MltD-1, NP_414747; E. coli MltD-2,
NP_414747; E. faecalis AtlA, NP_814543; H. sapiens LysMD1,
NP_997716; H. sapiens LysMD2, NP_699205; H. sapiens
LysMD3, NP_938014; H. sapiens LysMD4, AAH84545;
M. musculus LysMD1, NP_694761; M. musculus LysMD2,
NP_081585; M. musculus LysMD3, NP_084533; M. musculus
LysMD4, NP_780424; M. musculus Ncoa7, NP_766083;
M. musculus Oxr1, NP_001123635; X. tropicalis LysMD1,
NP_001096341; X. tropicalis LysMD2, NP_001037868; X.
tropicalis LysMD3, NP_001017308; and X. tropicalis LysMD4,
XP_012815036.

Cell fractionation and immunoblot

WT bone marrow macrophages were generated as described
previously (59). Briefly, bone marrow cells were cultured in
10% FBS, 10% CMG14-12 supernatant fluids containing
macrophage colony-stimulating factor (60). At day 7, cells
were subjected to differential detergent fractionation using a
QProteome kit (Qiagen), according to the manufacturer’s
instructions. Fractions were subjected to Western blot anal-
ysis with antibodies to the indicated proteins. All Western
blotting experiments were repeated twice, and representa-
tive images are shown.

Protease protection assay

TransIT-LT1 (Mirus) was used to transfect an expression
construct coding for FLAG-LysMD3-HA into HeLa cells. 24 h
post-transfection, cells were treated with 80 �M digitonin to
permeabilize the plasma membrane. Samples were treated with
the indicated concentration of proteinase K on ice, and prote-
ase activity was inhibited by the addition of phenylmethylsulfo-
nyl fluoride prior to Western blot analysis with the indicated
antibodies. Experiments were repeated twice, and representa-
tive blots are shown.

Immunofluorescence

MEFs or HeLa cells were seeded on coverslips, fixed in 4%
methanol-free paraformaldehyde, permeabilized using 0.5%
Triton X-100, and blocked in 1% BSA and 10% serum corre-
sponding to the secondary antibody species. Cells were stained
using the indicated primary and secondary antibodies and phal-
loidin AF594 or AF647 (Invitrogen). Coverslips were mounted
using Prolong Gold Antifade reagent (Invitrogen). For determi-
nation of membrane orientation by immunofluorescence stain-
ing, TransIT-LT1 (Mirus) was used to transfect HeLa cells with
the indicated LysMD3 constructs. Cells were fixed, blocked,
and stained with an anti-GFP antibody prior to permeabiliza-
tion using 0.5% Triton X-100, re-blocking, and re-staining for
GFP where appropriate. Phalloidin-Alexa594 (Invitrogen) was
used to visualize actin. Immunofluorescence images were
acquired using a Zeiss LSM510 confocal microscope or a Zeiss
LSM880 confocal laser-scanning microscope. Unless otherwise
noted, three separate experiments were performed, and repre-
sentative images are shown.

qRT-PCR

RNA was extracted from tissues, and qRT-PCR was per-
formed as described (61). RNA was extracted from tissues with
TRIzol (Life Technologies, Inc.) or TRI Reagent (Sigma)
according to the manufacturer’s protocol. One �g of RNA was
used as a template for random-primed cDNA synthesis with
ImPromII reverse transcriptase (Promega). Transcripts were
detected using predesigned TaqMan assays (IDT, Coralville,
IA) listed in Table 2, and the absolute number of transcript
copies was determined by comparison with target sequence-
containing gBlocks (IDT) and normalized to actin (Table 1).

C. rodentium

Kanamycin-resistant C. rodentium strain DBS120 (62, 63)
cultures in log-phase growth were pelleted and resuspended in
PBS with 3% bicarbonate. Mice were infected with �1e9 CFU
intragastrically. Mice were subsequently weighed. Bacterial
titers per stool pellet were determined by homogenizing a sin-
gle stool pellet in 1 ml of PBS with 0.05% Triton X-100 using
1-mm silica beads (Biospec) on a mini-beadbeater 24 (Biospec)
and plating serial dilutions on LB agar plates.

S. enterica serotype Typhimurium

S. enterica serotype Typhimurium SL1344 was used to inoc-
ulate streptomycin-pretreated mice, as described previously
(18). Mice were fasted and pretreated with 200 �g of strepto-
mycin 24 h before infection. On the day of infection, mice were
fasted for 4 h, then gavaged with 1e8 CFU of SL1344 in PBS, and
harvested in log-phase growth.

Histological preparation of tissues and colitis scoring

Colons and ceca were harvested and flushed with 10% neu-
tral buffered formalin. Tissues were cut open, pinned flat,
allowed to fix overnight at 4 °C, washed in 70% ethanol, and
embedded in agar for processing. Sections were H&E-stained
and scored for colitis severity using the following scoring sys-
tem: 0, no acute inflammation; 1, acute inflammation in surface
epithelium, lamina propria, or cryptitis; 2, crypt abscess; 3,
acute inflammation present at muscularis mucosa or beyond; 4,
ulcer or transmural inflammation. The extent of involved colon
was also evaluated as an estimated percentage.

Listeria monocytogenes

L. monocytogenes strain EGD from a frozen glycerol stock
was used to infect mice i.p. as described (64). L. monocytogenes
experiments used B6 mice as controls and LysMD3-deficient
mice were generated by intercrossing KO mice.

F. novicida

BMMo were differentiated in DMEM with 10% FBS and 20%
macrophage colony-stimulating factor and infected with

Table 2
Predesigned qPCR assays

Target Assay

mLysMD3 Mm.PT.58.10100260
mLysMD4 Mm.PT.58.12179173
Adgrv1 Mm.PT.58.43743756
Polr3g Mm.PT.58.10070464
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F. novicida U112 and �FPI as described previously (65, 66).
Cytotoxicity was measured using lactate dehydrogenase release
(Promega), and type I IFN levels were measured using ISRE-
L929 reporter cells (67).

M. tuberculosis

M. tuberculosis Erdman strain bacteria were used to infect
mice by the aerosol route, as described previously (64, 68).
Approximately 100 CFU of M. tuberculosis was inoculated
using an Inhalation Exposure System (Glass-Col, Terre Haute,
IN). At 0 or 24 HPI, 1–2 mice were sacrificed, and the number
of CFU delivered per mouse were quantitated to determine
infection efficiency. Tissue bacterial titers were determined by
plating dilutions of lung and spleen homogenate on 7H10 agar
plates.

B. abortus

Littermate-matched mice between the ages of 7 and 17 weeks
were bred and housed at Washington University and shipped to
UC Davis, where they were housed in microisolator cages with
sterile bedding and irradiated feed in a biosafety level 3 labora-
tory. Mice were infected intraperitoneally (i.p.) with 1e6 CFU of
B. abortus 2308. Spleens and livers were collected aseptically.
Spleens and livers were homogenized, and serial dilutions of the
homogenate were plated on tryptic soy agar for enumeration of
CFUs.

L. pneumophila

Primary BMMo were infected with L. pneumophila, as
described previously (30, 69). Lactate dehydrogenase release
was quantitated using the Cytotox assay (Promega) as
described previously (30).

Uropathogenic E. coli

Anesthetized female mice were transurethrally inoculated
with 1e7 CFU UPEC strain UTI89. At 24 HPI, urine was col-
lected for CFU enumeration and cytokine analysis; serum was
collected for cytokine analysis, and bladder tissues were
removed for inflammation scoring (70, 71). IL1� concentra-
tions in the urine and serum were determined by ELISA (R&D
Systems). A semiquantitative scoring system, with a scale of 0
(normal) to 5 (necrosis with full-thickness inflammatory infil-
tration), was used to evaluate bladder inflammation at 24 HPI
(71). UTI89 infection of BMMo was performed as described
(72). Briefly, macrophages were differentiated from whole bone
marrow in DMEM containing 15% FBS and 30% L929 condi-
tioned media. Cells were re-plated on day 8 and challenged with
UTI89 on day 9 at an MOI of 0.1. Supernatant fluids were col-
lected at the indicated time points, and IL1� concentration was
determined as above.

C. trachomatis and S. flexneri

Infections of BMMo with C. trachomatis serovar L2 434/Bu
at an MOI of 10 or S. flexneri serovar 2a WT strain 2457T at an
MOI of 1 were performed in triplicate as described (73, 74), and
supernatant fluids were collected for cytokine analysis using
L929-ISRE fibroblasts to measure IFN� levels (73). Sandwich
ELISA was used to determine IL6 levels (BD Biosciences).

Serum-induced arthritis

Serum was isolated from K/BxN mice as described previously
(34). Serum was injected intravenously (i.v.) into littermate-
matched male mice, and morbidity and ankle swelling were
determined at the indicated times post-serum transfer (75).

LPS treatments

Mice were injected i.p. with 20 mg/kg LPS purified by phenol
extraction (Sigma L-2880). PECs were isolated by flushing the
peritoneal cavity with 10 ml of ice-cold DMEM containing 10%
FBS. Cells were counted, plated on 96-well tissue culture-
treated plates, and incubated for 3 days. Cells were stimulated
with 100 ng/ml LPS purified by ion-exchange chromatography
(Sigma L4524) � 16 h IFN� pretreatment. Supernatant fluids
were collected 6 h post-stimulation, and TNF� was quantitated
by ELISA (BD Biosciences).

Influenza

8 –12-Week-old mice were anesthetized and inoculated with
50 TCID50 H1N1 influenza virus strain PR8 i.n., as described
(76). Mice losing more than 30% of their initial body weight
were sacrificed.

MHV68 ex vivo limiting dilution assay for reactivation from
latency

MHV68 WUMS (ATCC VR1465) was used, and reactivation
from latency was measured as described (36, 37, 77). Mice were
infected with 1e6 PFU MHV68 i.p., and after 16 days, PECs or
spleens were pooled from 3 to 5 mice, and serial dilutions of
cells were plated on a MEF monolayer. After 3 weeks, wells were
scored for cytopathic effect to detect reactivation. Data points
represent the mean and standard error for three replicate
experiments using three mice per genotype per experiment.
MHV68 experiments used B6 mice as controls, and LysMD3-
deficient mice were generated by intercrossing KO mice.

C. neoformans

C. neoformans strain KN99� was recovered from 15% glyc-
erol stocks stored at �80 °C and maintained on YPD plates (1%
yeast extract, 2% peptone, 2% dextrose, and 2% Bacto agar). A
single colony was inoculated into YPD broth and grown for 16 h
at 30 °C with shaking, collected by centrifugation, washed three
times with sterile PBS, and counted on a Cellometer Auto M10
(Nexcelom Bioscience, Lawrence, MA). Female WT or
LysMD3 KO littermate mice from the LysMD3 GT line were
anesthetized by i.p. injection (of 150 �l of 2 mg/ml xylazine
(VEDCO) and 10 mg/ml of ketaset (Fort Dodge Animal
Health)) and i.n. inoculated with 5e4 CFU (verified by quanti-
tative culture on YPD agar) in 50 �l of sterile PBS. Mice were
euthanized when body weight fell below 80% of peak weight.

A. fumigatus

A. fumigatus CEA10 (CBS 144.89) was grown, and conidia
were harvested similar to Ref. 78. Mice were infected i.n. with
1e7 conidia. Weight was monitored daily, and mice were sacri-
ficed at 72 HPI. Lungs were lavaged with 1 ml of PBS with
EDTA and fetal bovine serum. RBCs in the BAL were lysed, and
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cell counts were performed. Cytospin preparations were ana-
lyzed by light microscopy to determine differential counts.
Lungs were fixed, paraffin-embedded, and stained with hema-
toxylin and eosin for assessment of pathological changes.
Hyphae were stained using Grocott methamine silver.

Antibiotic treatment of mice for 16S analysis

Female WT and KO mice were co-housed for 2 weeks, at a
ratio of 2 WT and 2 KO mice per cage. After 2 weeks, mice were
individually housed and were administered grape Kool-Aid � a
broad-spectrum antibiotic mixture in their drinking water (79)
for another 2 weeks. The antibiotic mixture consisted of 1 g/li-
ter ampicillin, 1 g/liter metronidazole, 1 g/liter neomycin, 0.5
g/liter vancomycin (Sigma) in 20 mg/ml grape Kool-Aid (Kraft
Foods, Northfield, IL). After antibiotic treatment, stool pellets
were collected for 16S analysis (79).

16S rRNA Illumina sequencing and analysis

Preparation of fecal pellets for 16S analysis was as described
previously (79, 80). Briefly, DNA was phenol/chloroform-ex-
tracted and amplified in triplicate with Golay-barcoded prim-
ers specific for the V4 region of the 16S rRNA. Amplicons were
pooled and purified with 0.6	 Agencourt Ampure XP beads
(Beckman-Coulter) prior to sequencing at the Center for
Genome Sciences, Washington University School of Medicine,
by the 2 	 250-bp protocol on the Illumina MiSeq platform. 16S
rRNA gene sequences were resolved using dada2 (81). Taxon-
omy was assigned to resolved sequences according to the
Greengenes database (version 13.8) (82). All subsequent analy-
ses were performed using PhyloSeq (version 1.16.2) (83) to cal-
culate richness, per sample Shannon diversity, and both
weighted and unweighted UniFrac distances among samples
(84). Differential abundance of bacterial taxa between experi-
mental groups was determined using the PhyloSeq DESeq2
extension using the Wald significance test and a local fit type
(version 1.6.3) (83, 85).

RNA-Seq

RNA from the distal ileum was purified; an Illumina sequenc-
ing library was generated, and libraries were sequenced (HiSeq
platform), as described previously (37). Five to six mice were
included in each group. DESeq2 was used to identify differen-
tially expressed genes (85).

Sequencing data

RNA-seq and 16S sequencing data were deposited to the
European nucleotide archive under the accession numbers
PRJEB23707 and PRJEB25196, respectively.

Antigen presentation

Antigen presentation by BMMo was assessed as described
(86, 87). BMMo were generated in 10% FBS and 10%
CMG14 –12 supernatant fluids (60) and infected with L. mono-
cytogenes strain 10403S or pulsed with LLO peptide � IFN�
priming. At 1 HPI, infected BMMo were washed with Dulbec-
co’s PBS, and gentamycin was added. Splenic CD4 T cells iso-
lated from LLO56tg mice (86), bearing a T cell receptor specific
for LLO190-225, were isolated using a CD4-negative selection

kit (Miltenyi Biotech, Bergisch Gladbach, Germany) and added
to the macrophage cultures. After 24 h, cells were stained for
CD4 (eFluor450, Clone RM4-5, eBioscience) and CD69
(PECy7, Clone H1.2F3, BioLegend) to evaluate activation
status.
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