2,129 research outputs found

    ‘‘There’s so much more to it than what I initially thought’’: Stepping into researchers’ shoes with a class activity in a first year psychology survey course

    Get PDF
    In psychology, it is widely agreed that research methods, although central to the discipline, are particularly challenging to learn and teach, particularly at introductory level. This pilot study explored the potential of embedding a student-conducted research activity in a one-semester undergraduate Introduction to Psychology survey course, with the aims of (a) engaging students with the topic of research methods; (b) developing students’ comprehension and application of research methods concepts; and (c) building students’ ability to link research with theory. The research activity explored shoe ownership, examining gender differences and relationships with age, and linking to theories of gender difference and of consumer identity. The process of carrying out the research and reflecting on it created a contextualized, active learning environment in which students themselves raised many issues that research methods lectures seek to cover. Students also wrote richer assignments than standard first year mid-term essay

    Hormone replacement therapy after surgery for stage 1 or 2 cutaneous melanoma

    Get PDF
    A total of 206 women were followed for a minimum of 5 years after primary melanoma surgery to establish if hormone replacement therapy (HRT) adversely affected prognosis. In all, 123 had no HRT and 22 have died of melanoma; 83 had HRT for varying periods and one has died of melanoma. After controlling for known prognostic factors, we conclude that HRT after melanoma does not adversely affect prognosis

    Thick primary melanoma has a heterogeneous tumor biology: an institutional series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thick melanomas (TM) ≥4 mm have a high risk for nodal and distant metastases. Optimal surgical management, prognostic significance of sentinel node biopsy (SLNB), and benefits of interferon (IFN) for these patients are unclear. As a continuum of increasing tumor thickness is placed into a single TM group, differences in biologic and clinical behavior may be lost. The purpose of this study was to better characterize the diverse biology in TM, including the value of increasing thickness and nodal status information, potentially identifying high risk TM subgroups that may warrant more aggressive treatment/follow up.</p> <p>Methods</p> <p>155 consecutive TM patients treated at a single institution between 1971 and 2007 were retrospectively reviewed. Patient, disease and treatment features were analyzed with respect to disease-free (DFS) and overall survival (OS).</p> <p>Results</p> <p>Median patient age was 66 years and 68% of patients were men. The trunk was the most common TM location (35%), followed by the head and neck (29%) and lower extremities (20%). Median thickness was 6 mm and 61% were ulcerated. 6% patients had stage IV disease, 12% had clinical nodal metastases. Clinically negative lymph node basins were treated by observation (22 patients - 15.4%), elective lymph node dissection (ELND) (24 patients - 17.6%) or SLNB (91 patients - 67%). 75% of ELND's and 53% of SLNB's were positive. Completion node dissection was performed in 38 SLNB+ patients and 22% had additional positive nodes. 17% of the study patients received IFN. At median follow up of 26 months, 5 year DFS and OS were 42% and 43.6%. For SLNB positive vs negative, median DFS were 22 vs 111 months (p = 0.006) and median OS were 41 vs 111 months (p = 0.006). When stratified by tumor thickness ≤ vs > 6 mm, 5 year DFS was 58.3% vs 20% (p < 0.0001) and OS was 62% vs 20% (P < 0.0001). IFN had no impact on DFS or OS (p = 0.98 and 0.8 respectively).</p> <p>Conclusion</p> <p>Within the high risk group of patients with TM, cases with tumor thickness > 6 mm or a positive SLNB had a significantly worse DFS and OS (p < .0001, <.0001 and .006, .006).</p

    Community‐wide validation of geospace model local K‐index predictions to support model transition to operations

    Full text link
    We present the latest result of a community‐wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC’s effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K‐index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high‐latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event‐by‐event basis, aggregated over events, at specific station locations, and separated into high‐latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.Key PointsReport community‐wide model validation resultsEvaluate ability of models to predict a local index of magnetic perturbationAnalysis directly led to selection of models to transition to operations at NOAA/SWPCPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134170/1/swe20333-sup-0001-supplementary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134170/2/swe20333_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134170/3/swe20333.pd

    Prognostic Value of [18F]-Fluoro-Deoxy-Glucose PET/CT, S100 or MIA for Assessment of Cancer-Associated Mortality in Patients with High Risk Melanoma

    Get PDF
    PURPOSE: To assess the prognostic value of FDG PET/CT compared to the tumor markers S100B and melanoma inhibitory activity (MIA) in patients with high risk melanoma. METHODS: Retrospective study in 125 consecutive patients with high risk melanoma that underwent FDG PET/CT for re-staging. Diagnostic accuracy and prognostic value was determined for FDG PET/CT as well as for S100B and MIA. As standard of reference, cytological, histological, PET/CT or MRI follow-up findings as well as clinical follow-up were used. RESULTS: Of 125 patients, FDG PET/CT was positive in 62 patients. 37 (29.6%) patients had elevated S100B (>100 pg/ml) and 24 (20.2%) had elevated MIA (>10 pg/ml) values. Overall specificities for FDG PET/CT, S100B and MIA were 96.8% (95% CI, 89.1% to 99.1%), 85.7% (75.0% to 92.3%), and 95.2% (86.9% to 98.4%), corresponding sensitivities were 96.8% (89.0% to 99.1%), 45.2% (33.4% to 55.5%), and 36.1% (25.2% to 48.6%), respectively. The negative predictive values (NPV) for PET/CT, S100B, and MIA were 96.8% (89.1% to 99.1%), 61.4% (50.9% to 70.9%), and 60.6% (50.8% to 69.7%). The positive predictive values (PPV) were 96.7% (89.0% to 99.1%), 75.7% (59.9% to 86.6%), and 88.0% (70.0% to 95.8%). Patients with elevated S100B- or MIA values or PET/CT positive findings showed a significantly (p<0.001 each, univariate Cox regression models) higher risk of melanoma associated death which was increased 4.2-, 6.5- or 17.2-fold, respectively. CONCLUSION: PET/CT has a higher prognostic power in the assessment of cancer-associated mortality in melanoma patients compared with S100 and MIA

    Perspectives on Continental Rifting Processes From Spatiotemporal Patterns of Faulting and Magmatism in the Rio Grande Rift, USA

    Full text link
    Analysis of spatiotemporal patterns of faulting and magmatism in the Rio Grande rift (RGR) in New Mexico and Colorado, USA, yields insights into continental rift processes, extension accommodation mechanisms, and rift evolution models. We combine new apatite (U‐Th‐Sm)/He and zircon (U‐Th)/He thermochronometric data with previously published thermochronometric data to assess the timing of fault initiation, magnitudes of fault exhumation, and growth and linkage patterns of rift faults. Thermal history modeling of these data reveals contemporaneous rift initiation at ca. 25 Ma in both the northern and southern RGR with continued fault initiation, growth, and linkage progressing from ca. 25 to ca. 15 Ma. The central RGR, however, shows no evidence of Cenozoic fault‐related exhumation as observed with thermochronometry and instead reveals extension accommodated through Late Cenozoic magmatic injection. Furthermore, faulting in the northern and southern RGR occurs along an approximately north‐south strike, whereas magmatism in the central RGR occurs along the northeast to southwest trending Jemez lineament. Differences in deformation orientation and rift accommodation along strike appear to be related to crustal and lithospheric properties, suggesting that rift structure and geometry are at least partly controlled by inherited lithospheric‐scale architecture. We propose an evolutionary model for the RGR that involves initiation of fault‐accommodated extension by oblique strain followed by block rotation of the Colorado Plateau, where extension in the RGR is accommodated by faulting (southern and northern RGR) and magmatism (central RGR). This study highlights different processes related to initiation, geometry, extension accommodation, and overall development of continental rifts.Plain Language SummaryWe identify patterns of faulting and volcanism in the Rio Grande rift (RGR) in the western United States to better understand how continental rifts evolve. Using methods for documenting rock cooling ages (thermochronology), we determined that rifting began around 25 million years ago (Ma) in both the northern and southern RGR. Rift faults continued to develop and grow for another 10 to 15 million years. The central RGR, however, shows that rift extension occurred through volcanic activity both as eruptions at the surface and as magma injection below the surface since ~15 Ma. Interestingly, RGR faulting in the north and south parts of the rift occurs on a north‐south line, while volcanism in the central RGR is along a northeast to southwest line. The differences in the location and orientation of faulting and volcanic activity may be related to the thickness of the lithosphere beneath different parts of the rift. Using these patterns of faulting and magmatism, we propose the RGR evolved through a combination of (1) oblique strain—extension diagonal to the rift and (2) block rotation—where the Colorado Plateau is the rotating block. This detailed study highlights different processes related to the accommodation of extension and the overall development of continental rifts.Key PointsInitiation of the Rio Grande rift appears to be synchronous ~25 Ma and does not support a northward propagation modelExtension is accommodated by faulting in the northern and southern Rio Grande rift and by magmatic injection in the central Rio Grande riftDifferent rift accommodation mechanisms may be controlled by preexisting weaknesses and lithospheric properties (i.e., thickness)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/1/tect21226.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/2/wrcr21226-sup-00001-2019TC005635-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/3/tect21226_am.pd

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on \u3e100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
    corecore