13 research outputs found

    ceritinib plus nivolumab in patients with advanced alk rearranged non small cell lung cancer results of an open label multicenter phase 1b study

    Get PDF
    Abstract Introduction Induction of programmed death ligand 1 (PD-L1) expression due to constitutive oncogenic signaling has been reported in NSCLC models harboring echinoderm microtubule associated protein like 4 gene (EML4)–ALK receptor tyrosine kinase gene (ALK) rearrangements. We assessed the safety and activity of ceritinib plus nivolumab in these patients. Methods In this open-label, phase 1B, multicenter, dose escalation and expansion study, previously treated (with ALK receptor tyrosine kinase [ALK] inhibitor [ALKI]/chemotherapy) or treatment-naive patients with stage IIIB or IV ALK-rearranged NSCLC received nivolumab, 3 mg/kg intravenously every 2 weeks, plus ceritinib, 450 mg/300 mg daily, with a low-fat meal. Results In total, 36 patients were treated (a 450-mg cohort [n=14] and a 300-mg cohort [n=22]). In the 450-mg cohort, four patients experienced dose-limiting toxicities. In the 300-mg cohort, two patients experienced dose-limiting toxicities. Among ALKI-naive patients, the overall response rate (ORR) was 83% (95% confidence interval [CI]: 35.9–99.6) in the 450-mg cohort and 60% (95% CI: 26.2–87.8) in the 300-mg cohort. Among ALKI-pretreated patients, the ORR was 50% (95% CI: 15.7–84.3) in the 450-mg cohort and 25% (95% CI: 5.5–57.2) in the 300-mg cohort. The ORR point estimate was observed to be greater in patients who were positive for PD-L1 than in those who were negative for PD-L1, with overlapping CIs (e.g., at a cutoff ≥1% PD-L1, 64% of patients [95% CI: 35.1–87.2] had confirmed responses as compared with those with negative PD-L1 staining (31% [95% CI: 11.0–58.7]). The most frequently reported grade 3 or 4 adverse events were increased alanine aminotransferase level (25%), increased gamma-glutamyl transferase level (22%), increased amylase level (14%), increased lipase level (11%), and maculopapular rash (11%). The incidence of all-grade rash (grouped term) was 64% in both cohorts; grade 3 rash was reported in 29% and 14% of patients in the 450-mg and 300-mg cohorts, respectively; no grade 4 rash was reported. Conclusion Ceritinib plus nivolumab has activity; ORR appears to correlate with PD-L1 at baseline. Toxicity, especially rash, is more common than with either single agent

    Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer

    Get PDF
    BACKGROUND: Among patients with non-small-cell lung cancer (NSCLC), MET exon 14 skipping mutations occur in 3 to 4% and MET amplifications occur in 1 to 6%. Capmatinib, a selective inhibitor of the MET receptor, has shown activity in cancer models with various types of MET activation. METHODS: We conducted a multiple-cohort, phase 2 study evaluating capmatinib in patients with MET-dysregulated advanced NSCLC. Patients were assigned to cohorts on the basis of previous lines of therapy and MET status (MET exon 14 skipping mutation or MET amplification according to gene copy number in tumor tissue). Patients received capmatinib (400-mg tablet) twice daily. The primary end point was overall response (complete or partial response), and the key secondary end point was response duration; both end points were assessed by an independent review committee whose members were unaware of the cohort assignments. RESULTS: A total of 364 patients were assigned to the cohorts. Among patients with NSCLC with a MET exon 14 skipping mutation, overall response was observed in 41% (95% confidence interval [CI], 29 to 53) of 69 patients who had received one or two lines of therapy previously and in 68% (95% CI, 48 to 84) of 28 patients who had not received treatment previously; the median duration of response was 9.7 months (95% CI, 5.6 to 13.0) and 12.6 months (95% CI, 5.6 to could not be estimated), respectively. Limited efficacy was observed in previously treated patients with MET amplification who had a gene copy number of less than 10 (overall response in 7 to 12% of patients). Among patients with MET amplification and a gene copy number of 10 or higher, overall response was observed in 29% (95% CI, 19 to 41) of previously treated patients and in 40% (95% CI, 16 to 68) of those who had not received treatment previously. The most frequently reported adverse events were peripheral edema (in 51%) and nausea (in 45%); these events were mostly of grade 1 or 2. CONCLUSIONS: Capmatinib showed substantial antitumor activity in patients with advanced NSCLC with a MET exon 14 skipping mutation, particularly in those not treated previously. The efficacy in MET-amplified advanced NSCLC was higher in tumors with a high gene copy number than in those with a low gene copy number. Low-grade peripheral edema and nausea were the main toxic effects. (Funded by Novartis Pharmaceuticals; GEOMETRY mono-1 ClinicalTrials.gov number, NCT02414139.).</p

    A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma

    Get PDF
    Purpose: To estimate the maximum tolerated dose (MTD) and/or identify the recommended Phase II dose (RP2D) for combined INC280 and buparlisib in patients with recurrent glioblastoma with homozygous phosphatase and tensin homolog (PTEN) deletion, mutation or protein loss. Methods: This multicenter, open-label, Phase Ib/II study included adult patients with glioblastoma with mesenchymal-epithelial transcription factor (c-Met) amplification. In Phase Ib, patients received INC280 as capsules or tablets in combination with buparlisib. In Phase II, patients received INC280 only. Response was assessed centrally using Response Assessment in Neuro-Oncology response criteria for high-grade gliomas. All adverse events (AEs) were recorded and graded. Results: 33 patients entered Phase Ib, 32 with altered PTEN. RP2D was not declared due to potential drug–drug interactions, which may have resulted in lack of efficacy; thus, Phase II, including 10 patients, was continued with INC280 monotherapy only. Best response was stable disease in 30% of patients. In the selected patient population, enrollment was halted due to limited activity with INC280 monotherapy. In Phase Ib, the most common treatment-related AEs were fatigue (36.4%), nausea (30.3%) and increased alanine aminotransferase (30.3%). MTD was identified at INC280 Tab 300 mg twice daily + buparlisib 80 mg once daily. In Phase II, the most common AEs were headache (40.0%), constipation (30.0%), fatigue (30.0%) and increased lipase (30.0%). Conclusion: The combination of INC280/buparlisib resulted in no clear activity in patients with recurrent PTEN-deficient glioblastoma. More stringent molecular selection strategies might produce better outcomes. Trial registration: NCT01870726

    Temporal competition between differentiation programs determines cell fate choice

    Get PDF
    Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue, we simultaneously measured activities of the competing sporulation and competence programs in single Bacillus subtilis cells. This approach revealed that these competing differentiation programs progress independently without cross-regulation before the decision point. Cells seem to arrive at a fate choice through differences in the relative timing between the two programs. To test this proposed dynamic mechanism, we altered the relative timing by engineering artificial cross-regulation between the sporulation and competence circuits. Results suggest a simple model that does not require a checkpoint or intricate cross-regulation before cellular decision-making. Rather, cell fate choice appears to be the outcome of a 'molecular race' between differentiation programs that compete in time, providing a simple dynamic mechanism for decision-making

    Temporal competition between differentiation programs determines cell fate choice

    No full text
    Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue, we simultaneously measured activities of the competing sporulation and competence programs in single Bacillus subtilis cells. This approach revealed that these competing differentiation programs progress independently without cross-regulation before the decision point. Cells seem to arrive at a fate choice through differences in the relative timing between the two programs. To test this proposed dynamic mechanism, we altered the relative timing by engineering artificial cross-regulation between the sporulation and competence circuits. Results suggest a simple model that does not require a checkpoint or intricate cross-regulation before cellular decision-making. Rather, cell fate choice appears to be the outcome of a 'molecular race' between differentiation programs that compete in time, providing a simple dynamic mechanism for decision-making

    Potential value of ctDNA monitoring in metastatic HR + /HER2 − breast cancer: longitudinal ctDNA analysis in the phase Ib MONALEESASIA trial

    No full text
    Abstract Background There is increasing interest in the use of liquid biopsies, but data on longitudinal analyses of circulating tumor DNA (ctDNA) remain relatively limited. Here, we report a longitudinal ctDNA analysis of MONALEESASIA, a phase Ib trial evaluating the efficacy and safety of ribociclib plus endocrine therapy (ET) in Asian patients with hormone receptor–positive, human epidermal growth factor receptor-2–negative advanced breast cancer. Methods MONALEESASIA enrolled premenopausal and postmenopausal Japanese and postmenopausal non-Japanese Asian patients. All patients received ribociclib with ET (letrozole, fulvestrant, or tamoxifen with goserelin). ctDNA was analyzed using a targeted next-generation sequencing panel of 572 cancer-related genes and correlated by best overall response (BOR). Results Five hundred seventy-four cell-free DNA samples from 87 patients were tested. The most frequently altered genes at baseline included PIK3CA (29%) and TP53 (22%). Treatment with ribociclib plus ET decreased ctDNA in most patients at the first on-treatment time point, regardless of dose or ET partner. Patients with partial response and stable disease had lower ctDNA at baseline that remained low until data cutoff if no progressive disease occurred. Most patients with progressive disease as the best response had higher ctDNA at baseline that remained high at the end of treatment. For patients with partial response and stable disease with subsequent progression, ctDNA increased towards the end of treatment in most patients, with a median lead time of 83 days (14–309 days). In some patients with BOR of partial response who experienced disease progression later, specific gene alterations and total ctDNA fraction increased; this was sometimes observed concurrently with the development of new lesions without a change in target lesion size. Patients with alterations in PIK3CA and TP53 at baseline had shorter median progression-free survival compared with patients with wild-type PIK3CA and TP53, 12.7 and 7.3 months vs 19.2 and 19.4 months, respectively (P = .016 and P = .0001, respectively). Conclusions Higher ctDNA levels and PIK3CA and TP53 alterations detected at baseline were associated with inferior outcomes. On-treatment ctDNA levels were associated with different patterns based on BOR. Longitudinal tracking of ctDNA may be useful for monitoring tumor status and detection of alterations with treatment implications. Trial registration ClinicalTrials.gov NCT02333370 . Registered on January 7, 2015

    A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma

    No full text
    Purpose: To estimate the maximum tolerated dose (MTD) and/or identify the recommended Phase II dose (RP2D) for combined INC280 and buparlisib in patients with recurrent glioblastoma with homozygous phosphatase and tensin homolog (PTEN) deletion, mutation or protein loss. Methods: This multicenter, open-label, Phase Ib/II study included adult patients with glioblastoma with mesenchymal-epithelial transcription factor (c-Met) amplification. In Phase Ib, patients received INC280 as capsules or tablets in combination with buparlisib. In Phase II, patients received INC280 only. Response was assessed centrally using Response Assessment in Neuro-Oncology response criteria for high-grade gliomas. All adverse events (AEs) were recorded and graded. Results: 33 patients entered Phase Ib, 32 with altered PTEN. RP2D was not declared due to potential drug–drug interactions, which may have resulted in lack of efficacy; thus, Phase II, including 10 patients, was continued with INC280 monotherapy only. Best response was stable disease in 30% of patients. In the selected patient population, enrollment was halted due to limited activity with INC280 monotherapy. In Phase Ib, the most common treatment-related AEs were fatigue (36.4%), nausea (30.3%) and increased alanine aminotransferase (30.3%). MTD was identified at INC280 Tab 300 mg twice daily + buparlisib 80 mg once daily. In Phase II, the most common AEs were headache (40.0%), constipation (30.0%), fatigue (30.0%) and increased lipase (30.0%). Conclusion: The combination of INC280/buparlisib resulted in no clear activity in patients with recurrent PTEN-deficient glioblastoma. More stringent molecular selection strategies might produce better outcomes. Trial registration: NCT01870726

    A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma

    Get PDF
    Purpose: To estimate the maximum tolerated dose (MTD) and/or identify the recommended Phase II dose (RP2D) for combined INC280 and buparlisib in patients with recurrent glioblastoma with homozygous phosphatase and tensin homolog (PTEN) deletion, mutation or protein loss. Methods: This multicenter, open-label, Phase Ib/II study included adult patients with glioblastoma with mesenchymal-epithelial transcription factor (c-Met) amplification. In Phase Ib, patients received INC280 as capsules or tablets in combination with buparlisib. In Phase II, patients received INC280 only. Response was assessed centrally using Response Assessment in Neuro-Oncology response criteria for high-grade gliomas. All adverse events (AEs) were recorded and graded. Results: 33 patients entered Phase Ib, 32 with altered PTEN. RP2D was not declared due to potential drug–drug interactions, which may have resulted in lack of efficacy; thus, Phase II, including 10 patients, was continued with INC280 monotherapy only. Best response was stable disease in 30% of patients. In the selected patient population, enrollment was halted due to limited activity with INC280 monotherapy. In Phase Ib, the most common treatment-related AEs were fatigue (36.4%), nausea (30.3%) and increased alanine aminotransferase (30.3%). MTD was identified at INC280 Tab 300 mg twice daily + buparlisib 80 mg once daily. In Phase II, the most common AEs were headache (40.0%), constipation (30.0%), fatigue (30.0%) and increased lipase (30.0%). Conclusion: The combination of INC280/buparlisib resulted in no clear activity in patients with recurrent PTEN-deficient glioblastoma. More stringent molecular selection strategies might produce better outcomes. Trial registration: NCT01870726

    Ceritinib plus Nivolumab in Patients with Advanced ALK-Rearranged Non-Small Cell Lung Cancer: Results of an Open-Label, Multicenter, Phase 1B Study

    No full text
    INTRODUCTION: Induction of programmed death ligand 1 (PD-L1) expression due to constitutive oncogenic signaling has been reported in NSCLC models harboring echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) rearrangements. We assessed the safety and activity of ceritinib plus nivolumab in these patients. METHODS: In this open-label, phase 1B, multicenter, dose escalation and expansion study, previously treated (with ALK receptor tyrosine kinase [ALK] inhibitor [ALKI]/chemotherapy) or treatment-naive patients with stage IIIB or IV ALK-rearranged NSCLC received nivolumab, 3 mg/kg intravenously every 2 weeks, plus ceritinib, 450 mg/300 mg daily, with a low-fat meal. RESULTS: In total, 36 patients were treated (a 450-mg cohort [n=14] and a 300-mg cohort [n=22]). In the 450-mg cohort, four patients experienced dose-limiting toxicities. In the 300-mg cohort, two patients experienced dose-limiting toxicities. Among ALKI-naive patients, the overall response rate (ORR) was 83% (95% confidence interval [CI]: 35.9-99.6) in the 450-mg cohort and 60% (95% CI: 26.2-87.8) in the 300-mg cohort. Among ALKI-pretreated patients, the ORR was 50% (95% CI: 15.7-84.3) in the 450-mg cohort and 25% (95% CI: 5.5-57.2) in the 300-mg cohort. The ORR point estimate was observed to be greater in patients who were positive for PD-L1 than in those who were negative for PD-L1, with overlapping CIs (e.g., at a cutoff ≥1% PD-L1, 64% of patients [95% CI: 35.1-87.2] had confirmed responses as compared with those with negative PD-L1 staining (31% [95% CI: 11.0-58.7]). The most frequently reported grade 3 or 4 adverse events were increased alanine aminotransferase level (25%), increased gamma-glutamyl transferase level (22%), increased amylase level (14%), increased lipase level (11%), and maculopapular rash (11%). The incidence of all-grade rash (grouped term) was 64% in both cohorts; grade 3 rash was reported in 29% and 14% of patients in the 450-mg and 300-mg cohorts, respectively; no grade 4 rash was reported. CONCLUSION: Ceritinib plus nivolumab has activity; ORR appears to correlate with PD-L1 at baseline. Toxicity, especially rash, is more common than with either single agent.status: publishe
    corecore